[1] 中国人民解放军总装备部电子信息基础部. 装备环境 工程通用要求: GJB 4239—2001[S]. 北京:总装备部军 标出版发行部, 2001. The Electronic Information Foundation Department of the General Armament Department of PLA. General requirements for materiel environmental engineering: GJB 4239—2001[S]. Beijing: Military Standard Publishing and Distribution Department of the General Armament Department, 2001. [2] 中国人民解放军总装备部电子信息基础部. 装备环境 工程术语: GJB 6117—2007[S]. 北京:总装备部军标出 版发行部, 2007. The Electronic Information Foundation Department of the General Armament Department of PLA. Materiel environmental engineering terms: GJB 6117—2007[S]. Beijing: Military Standard Publishing and Distribution Department of the General Armament Department, 2007. [3] 韦正现. 智能装备试验与测试的挑战与对策思考[J]. 测控技术, 2021, 40(2): 1-5. WEI Zhengxian. Challenge and countermeasure of intelligent equipment experiment and test[J]. Measurement & Control Technology, 2021, 40(2): 1-5. [4] 李颖,王荣煊,万成麟,等. 分体式飞行汽车立体环境 感知系统设计及试验研究[J]. 机械工程学报, 2024, 60(10): 102-111. LI Ying, WANG Rongxuan, WAN Chenglin, et al. Design and experiment research of 3D environmental perception system for split-type flying vehicle[J]. Journal of Mechanical Engineering, 2024, 60(10): 102-111. [5] 蒋瑜. 频谱可控的超高斯随机振动环境模拟技术及其 应用研究[D]. 长沙:国防科学技术大学, 2005. JIANG Yu. Research on the simulation of super-gaussian random vibration environment with controllable frequency spectrum and its applications[D]. Changsha: National University of Defense Technology, 2005. [6] LI Li, WANG Xiao, WANG Kunfeng, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106. [7] 朱冰,张培兴,赵健,等. 基于场景的自动驾驶汽车虚 拟测试研究进展[J]. 中国公路学报, 2019, 32(6): 1-19. ZHU Bing, ZHANG Peixin, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19. [8] CARLSON J, MURPHY R R. How UGVs physically fail in the field[J]. IEEE Transactions on Robotics, 2005, 21(3): 423-437. [9] 邵禹铭. 基于虚拟现实的无人车测试环境构建研究[D]. 西安:长安大学, 2019. SHAO Yuming. Research on the construction of unmanned vehicle test environment based on virtual reality[D]. Xi’an: Chang’an University, 2019. [10] 王田苗,张韬懿,梁建宏,等. 基于再生能源的极地漫 游机器人研究及现场试验[J]. 机械工程学报, 2013, 49(19): 21-30. WANG Tianmiao, ZHANG Taoyi, LIANG Jianhong, et al. Design and field test of a rover robot for antarctic based on renewable energy[J]. Journal of Mechanical Engineering, 2013, 49(19): 21-30. [11] LI Nianshi, LIU Xiaoyong, YU Bendong, et al. Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions[J]. Energy, 2021, 219: 119481. [12] OMIDSHAFIEI S, AGHA-MOHAMMADI A A, CHEN Y F, et al. Measurable augmented reality for prototyping cyberphysical systems: A robotics platform to aid the hardware prototyping and performance testing of algorithms[J]. IEEE Control Systems Magazine, 2016, 36(6): 65-87. [13] 武月琴,傅耘. 装备环境适应性表征方法研究[J]. 装备 环境工程, 2008, 5(6): 52-55. WU Yueqin, FU Yun. Research on characterization of equipment environmental worthiness[J]. Equipment Environmental Engineering, 2008, 5(6): 52-55. [14] 王群,陈之光,汪文. 基于灰色理论的电子装备环境适 应性评判模型[J]. 装备环境工程, 2010, 7(6): 94-98. WANG Qun, CHEN Zhiguang, WANG Wen, et al. Environmental worthiness model of electronic equipment based on grey theory[J]. Equipment Environmental Engineering, 2010, 7(6): 94-98. [15] 张礼学,王中伟. 平流层飞艇环境适应性评价模型[J]. 航空学报, 2013, 34(4): 719-726. ZHANG Lixue , WANG Zhongwei. Environmental adaptability evaluation model for stratospheric airships[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 719-726. [16] 孟光磊,李树发,刘彬斌,等. 防空预警雷达高原环境 适应性评估的自学习模糊灰度方法[J]. 兵工学报, 2022, 43(1): 98-110. MENG Guanglei , LI Shufa , LIU Binbin , et al. Self-learning fuzzy grey method for plateau environmental adaptability assessment of air defense early-warning radar[J]. Acta Armamentarii, 2022, 43(1): 98-110. [17] HONG Y, LIAN J, XU L, et al. Statistical perspectives on reliability of artificial intelligence systems[J]. Quality Engineering, 2023, 35 (1): 56-78. [18] DENG W, GOULD S, ZHENG L. What does rotation prediction tell us about classifier accuracy under varying testing environments?[C]//Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021: 2579-2589. [19] MIN J, HONG Y, KING C B, et al. Reliability analysis of artificial intelligence systems using recurrent events data from autonomous vehicles[J]. Journal of the Royal Statistical Society Series C: Applied Statistics. 2022, 71 (4): 987-1013. [20] JAFARZADEH M, AHMAD T, DHAMIJA A R, et al. Automatic open-world reliability assessment[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA. NewYork: IEEE, 2021: 1984-1993. [21] 彭湃,耿可可,王子威,等. 智能汽车环境感知方法综 述[J]. 机械工程学报, 2023, 59(20): 281-303. PENG Pai, GENG Keke, WANG Ziwei, et al. Review on environmental perception methods of autonomous vehicles[J]. Journal of Mechanical Engineering, 2023, 59(20): 281-303. [22] 秦逸. 面向环境不确定性的 CPS 测试技术研究[D]. 南 京:南京大学, 2018. QIN Yi. Software testing for cyber-physical systems suffering uncertainty[D]. Nanjing: Nanjing University, 2018. [23] OBUKHOV A, KRASNYANSKIY M. Quality assessment method for GAN based on modified metrics inception score and Fréchet inception distance[J]. Proceedings of 4th Computational Methods in Systems and Software, 2020, 1: 102-114. [24] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[J]. Asian Journal of Applied Science and Engineering, 2019, 8: 25-34. [25] 贾学志,张雷,安源,等. 空间光学遥感器精密调焦机 构设计与试验[J]. 机械工程学报, 2016, 52(13): 25-30. JIA Xuezhi, ZHANG Lei, AN Yuan, et al. Design and experiment research on precision focusing mechanism of space remote sensor[J]. Journal of Mechanical Engineering, 2016, 52(13): 25-30. [26] 向红标,杨大虎,杨璐,等. 复杂环境下磁弹性微型游 泳机器人的路径规划与识别跟踪[J]. 机械工程学报,2023, 59(5): 89-99. XIANG Hongbiao, YANG Dahu, YANG Lu, et al. Path planning and recognition tracking of a magnetoelastic miniature swimmer in complex environment[J]. Journal of Mechanical Engineering, 2023, 59(5): 89-99. [27] LI Xingge, ZHANG Shufeng , CHEN Xun , et al. Robustness of visual perception system in progressive challenging weather scenarios[J]. Engineering Applications of Artificial Intelligence. 2023, 119: 105740. |