[1] 王向明,苏亚东,吴斌,等. 微桁架点阵结构在飞机结 构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10): 16-25. WANG Xiangming , SU Yadong , WU Bin , et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 16-25. [2] HOSSAIN M M S, SAQUEB S A N, ARAGE A H, et al. Wideband radomes for millimeter-wave automotive radars[J]. IEEE Transactions on Antennas and Propagation, 2021, 70(2): 1178-1186. [3] 段晟昱,王潘丁,刘畅,等. 增材制造三维点阵结构设 计、优化与性能表征方法研究进展[J]. 航空制造技术, 2022, 65(14): 36-48, 57. DUAN Shengyu, WANG Panding, LIU Chang, et al. Research progress on design , optimization and performance characterization of additive manufactured 3D lattice structures[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 36-48, 57. [4] 黄安坤,温耀杰,张百成,等. 增材制造金属点阵结构 性能研究进展[J]. 航空制造技术, 2023, 66(11): 90-101. HUANG Ankun, WEN Yaojie, ZHANG Baicheng, et al. Research progress on properties of metal lattice structure by additive manufacturing[J]. Aeronautical Manufacturing Technology, 2023, 66(11): 90-101. [5] 杨孝峰,盛亚鹏,苏宇锋. 简单立方点阵结构静态平压 性能分析[J]. 计算力学学报, 2024, 41(3): 513-518, 533. YANG Xiaofeng, SHENG Yapeng, SU Yufeng. Static compression performance analysis of simple cubic lattice structure[J]. Chinese Journal of Computational Mechanics, 2024, 41(3): 513-518, 533. [6] AZIZ A R, ZHOU J, THORNE D, et al. Geometrical scaling effects in the mechanical properties of 3D-printed body-centered cubic (BCC) lattice structures[J]. Polymers, 2021, 13(22): 3967. [7] ZHAO M, LIU F, FU G, et al. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM[J]. Materials, 2018, 11(12): 2411. [8] 张武昆,谭永华,高玉闪,等. 多层尺寸梯度面心立方 点阵结构力学性能研究[J]. 西安交通大学学报, 2023, 57(11): 21-30. ZHANG Wukun, TAN Yonghua, GAO Yushan, et al. Study on the mechanical behavior of multi-layer size-graded face center cubic lattice structures[J]. Journal of Xi’an Jiaotong University, 2023, 57(11): 21-30. [9] DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747-1769. [10] 邓昊宇,王春洁. 三维点阵结构等效热分析与优化方 法[J]. 北 京 航 空 航 天 大 学 学 报 , 2019 , 45(6) : 1122-1128. ZHENG Haoyu, WANG Chunjie. Equivalent thermal analysis and optimization method for three-dimensional lattice structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1122-1128. [11] 汪飞雪,姚龙飞,张天翊,等. 基于 SLM 工艺的变截 面四棱锥点阵结构建模与试验研究[J]. 机械工程学报, 2021, 57(24): 158-165. WANG Feixue, YAO Longfei, ZHANG Tianyi, et al. Modeling and experimental study of S-GBCC lattice structure based on SLM process[J]. Journal of Mechanical Engineering, 2021, 57(24): 158-165. [12] MA X, ZHANG N, CHANG Y, et al. Analytical model of mechanical properties for a hierarchical lattice structure based on hierarchical body-centered cubic unit cell[J]. Thin-Walled Structures, 2023, 193: 111217. [13] 梁珩,童明波,王玉青,等. 细编穿刺 C/C 复合材料热 导率数值模拟[J]. 固体火箭技术, 2017, 40(3): 364-371, 379. LIANG Heng, TONG Mingbo, WANG Yuqing, et al. Simulation on effective thermal conductivity of fine weave pierced C/C composite[J]. Journal of Solid Rocket Technology, 2017, 40(3): 364-371, 379. [14] CHENG X, WEI K, HE R, et al. The equivalent thermal conductivity of lattice core sandwich structure : A predictive model[J]. Applied Thermal Engineering, 2016, 93: 236-243. [15] 陈竞娴. 三维复合材料等效媒质理论的研究与应用[D]. 成都:电子科技大学, 2020. CHEN Jingxian. Research and application of equivalent medium theory of three-dimensional composite materials[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [16] 李鹏,王伟,郑飞,等. 晴空环境下的地基面天线多场 耦合分析及试验[J]. 宇航学报, 2010, 31(7): 1864-1869. LI Peng, WANG Wei, ZHENG Fei, et al. Multi-field coupling analysis and experiments of ground reflector antennas under clear-day solar radiation[J]. Journal of Chinese Society of Astronautics, 2010, 31(7): 1864-1869. [17] WANG C , DUAN B , ZHANG F , et al. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas[J]. IET Microwaves, Antennas & Propagation, 2010, 4(2): 247-257. [18] 张晓晨,林朝光,王振峰,等. 飞行器热天线热电联合 计算方法[J]. 航空学报, 2016, 37(S1): 66-72. ZHANG Xiaochen, LIN Chaoguang, WANG Zhenfeng, et al. Thermoelectric coupling calculation method for aircraft thermal antenna[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 66-72. [19] WANG C, WANG Y, CHEN Y, et al. Coupling model and electronic compensation of antenna-radome system for hypersonic vehicle with effect of high-temperature ablation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2340-2355. [20] 何东泽,李彦斌,陈强,等. 大尺度薄壁结构力-热-电 一体化分析[J]. 宇航学报, 2021, 42(1): 74-82. HE Dongze , LI Yanbin , CHEN Qiang , et al. Force-thermal-electricity integration analysis of large-scared thin-walled structures[J]. Journal of Astronautics, 2021, 42(1): 74-82. [21] 杨利鑫,何东泽,陈强,等. 高温环境下大尺度薄壁结 构的电性能优化设计[J]. 宇航学报, 2021, 42(9): 1099-1107. YANG Lixin, HE Dongze, CHEN Qiang, et al. Electrical performance optimization design of large-scale thin-wall structures in thermal environment[J]. Journal of Astronautics, 2021, 42(9): 1099-1107. [22] GEORGES H , MITTELSTEDT C , BECHER W. RVE-based grading of truss lattice cores in sandwich panels[J]. Archive of Applied Mechanics, 2023, 93(8): 3189-3203. [23] YU G, MIAO C, WU H, et al. Mechanical performance of heterogeneous lattice structure[J]. Vibroengineering Procedia, 2023, 50: 206-212. [24] 陶文铨. 传热学[M]. 5 版. 北京: 高等教育出版社, 2019. TAO Wenquan. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. [25] YANG L, SUN L, SHI Q, et al. Extraction of dielectric constant based on S-parameter inversion method[C]//ICCRD2011-2011 3rd International Conference on Computer Research and Development, Shanghai, China, March 11-13, 2011. [26] 许万业,李鹏,仇原鹰,等. 金属桁架式天线罩结构变 形对系统电性能的影响[J]. 机械工程学报, 2016, 52(1): 57-63. XU Wanye, LI Peng, QIU Yuanying, et al. Electrical performance analysis of metal space frame radome with structural deformation[J]. Journal of Mechanical Engineering, 2016, 52(1): 57-63. [27] 刘晓春. 雷达天线罩电性能设计技术[M]. 北京:航空 工业出版社, 2017. LIU Xiaochun. Radome electrical performance design technology[M]. Beijing: Aviation Industry Press, 2017. [28] NAIR R U, SHASHIDHARA S, JHA R M. Novel inhomogeneous planar layer radome design for airborne applications[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 854-856. [29] 吕思雨,马爱琼,李辉,等. 利用煤矸石制备莫来石陶 瓷[J]. 材料科学与工程学报, 2022, 40(1): 104-109. LÜ Siyu, MA Aiqiong, LI Hui, et al. Preparation of mullite ceramics from coal gangue[J]. Journal of Materials Science and Engineering, 2022, 40(1): 104-109. [30] 何东泽. 天线罩力热电一体化分析与优化研究[D]. 南 京:东南大学, 2021. HE Dongze. Research on mechanical thermal electromagnetic coupling analysis and optimization design of radome[D]. Nanjing: Southeast University, 2021. [31] LI C, LEI H, LIU Y, et al. Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 145: 389-399. [32] LEI H, LI C, ZHANG X, et al. Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures[J]. Additive Manufacturing, 2021, 37: 101674. [33] 孟美丽,刘琦. 基于波导法的聚氨酯注浆材料介电特性 试验研究[J]. 新型建筑材料, 2022, 49(7): 58-62, 75. MENG Meili , LIU Qi. Measurement of dielectric properties of polyurethane grouting material based on wave-guide method[J]. New Building Materials, 2022, 49(7): 58-62, 75. [34] MOORE R. Electromagnetic composites handbook : Models, measurement, and characterization[M]. New York: McGraw-Hill Education, 2016. [35] SALMON D R, TYE R P. Pyroceram 9606, a certified ceramic reference material for high-temperature thermal transport properties : Part 1-material selection and characterization[J]. International Journal of Thermophysics, 2010, 31(2): 338-354 . [36] 何小瓦,黄丽萍. 瞬态平面热源法热物理性能测量准确 度和适用范围的标定-常温下标准 Pyroceram 9606 材料 热物理性能测量[J]. 宇航计测技术, 2006, 26(4): 31-42, 51. HE Xiaowa , HUANG Liping. Verification of the measurement accuracy and application range for thermophysical properties of transient-transieut plane source(TPS) method using standard material Pyroceram 9606 at room temperature[J]. Journal of Astronautic Metrology and Measurement, 2006, 26(4): 31-42, 51. [37] NAKAMURA T, KAMIMURA Y, IGAWA H, et al. Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule[J]. Aerospace Science and Technology, 2014, 38: 48-55. |