[1] LIANG Xin, WANG Peng, ZHANG Xiantao, et al. Multi-objective robust energy management for environment powered unmanned surface vehicles[J]. Ocean Engineering, 2022, 247: 110624. [2] 姚天成,赵永生,王红雨,等. 风光混合驱动长航程无 人海空立体探测船研发[J]. 上海交通大学学报, 2021, 55(2): 215-220. YAO Tiancheng, ZHAO Yongsheng, WANG Hongyu, et al. Development of a hybrid solar and wind-powered long-range unmanned ocean stereo exploration vessel[J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 215-220. [3] WANG Peng, TIAN Xinliang, LIANG Xin, et al. Development of the control system for a wave driven glider[J]. Ocean Engineering, 2021, 229: 108813. [4] 王楠,周旭,周兰喜. 恶劣海况下船舶最小推进功率对 比研究[J]. 中国造船, 2022, 63(5): 136-145. WANG Nan, ZHOU Xu, ZHOU Lanxi. Comparative study of minimum propulsion power in adverse conditions[J]. Shipbuilding of China , 2022, 63(5): 136-145. [5] WANG Kai, LI Jiayuan, HUANG Lianzhong, et al. A novel method for joint optimization of the sailing route and speed considering multiple environmental factors for more energy efficient shipping[J]. Ocean Engineering, 2020, 216: 107591. [6] NAIR U R, SANDELIC M, SANGWONGWANICH A, et al. An analysis of multi objective energy scheduling in PV-BESS system under prediction uncertainty[J]. IEEE Transactions on Energy Conversion , 2021 , 36(3) : 2276-2286. [7] PAN Pengcheng, SUN Yuwei, YUAN Chengqing, et al. Research progress on ship power systems integrated with new energy sources : A review[J]. Renewable & Sustainable Energy Reviews, 2021, 144: 111048. [8] WANG Kai, XUE Yu, XU Hao, et al. Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping[J]. Energy, 2022, 245: 123155. [9] FANG Sidun, XU Yan. Multi-objective robust energy management for all-electric shipboard microgrid under uncertain wind and wave[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105600. [10] FAN Feilong, ADITYA V, XU Yan, et al. Robustly coordinated operation of a ship microgrid with hybrid propulsion systems and hydrogen fuel cells[J]. Applied Energy, 2022, 312: 118738. [11] WEI Zhangping. Forecasting wind waves in the US Atlantic Coast using an artificial neural network model: Towards an AI-based storm forecast system[J]. Ocean Engineering, 2021, 237: 109646. [12] FANG Sidun, XU Yan, WEN Shuli, et al. Data-driven robust coordination of generation and demand-side in photovoltaic integrated all-electric ship microgrids[J]. IEEE Transactions on Power Systems, 2019, 35(3): 1783-1795. [13] WEI Pengchao, VOGT S, WANG Danyang, et al. A novel energy management system for cruise ships including forecasting via LSTM[C]//2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe2020), October 26-28 , 2020, The Hague, Netherlands. Piscataway: IEEE, 2020: 1050-1054. [14] LI Zhengmao, XU Yan, FANG Sidun, et al. Robust coordination of a hybrid AC/DC multi-energy ship microgrid with flexible voyage and thermal loads[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 2782-2793. [15] HEIN K. Emission-aware and data-driven many-objective voyage and energy management optimization of solar-integrated all-electric ship[J]. Electric Power Systems Research, 2022, 213: 108718. [16] WANG Huaizhi, LEI Zhenxing, ZHANG Xian, et al. A review of deep learning for renewable energy forecasting[J]. Energy Conversion and Management , 2019, 198: 111799. [17] AGGA A, ABBOU A, LABBADI M, et al. Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models[J]. Renewable Energy, 2021, 177: 101-112. [18] XU Gang, ZHANG Siwen, SHI Weichao. Instantaneous prediction of irregular ocean surface wave based on deep learning[J]. Ocean Engineering, 2023, 267: 113218. [19] 唐小林,李珊珊,王红,等. 网联环境下基于分层式模 型预测控制的车队能量控制策略研究[J]. 机械工程学 报, 2020, 56(14): 119-128. TANG Xiaolin, LI Shanshan, WANG Hong, et al. Research on energy control strategy based on hierarchical model predictive control in connected environment[J]. Journal of Mechanical Engineering , 2020 , 56(14) : 119-128. [20] HUANG Yanjun, WANG Hong, KHAJEPOUR A, et al. Model predictive control power management strategies for HEVs: A review[J]. Journal of Power Sources, 2017, 341: 91-106. [21] XIE Peilin , GUERRERO J M , TAN Sen , et al. Optimization-based power and energy management system in shipboard microgrid : A review[J]. IEEE Systems Journal, 2021, 16(1): 578-590. [22] 张明霞,韩兵兵,卢鹏程,等. 基于 STAR-CCM+的小 水线面三体船阻力数值仿真[J]. 中国舰船研究, 2018, 13(4): 79-85. ZHANG Mingxia, HAN Bingbing, LU Pengcheng, et al. Numerical simulation for resistance of trimaran small waterplane area center hull based on STAR-CCM+[J]. Chinese Journal of Ship Research, 2018, 13(4): 79-85. [23] ZHOU Wei, YANG Hongxing, FANG Zhaohong. A novel model for photovoltaic array performance prediction[J]. Applied Energy, 2007, 84: 1187-1198. [24] LIU Zhijian , LI Ying , FAN Guangyao , et al. Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios[J]. Energy, 2022, 247: 123553. [25] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. [26] ZHU Jianyun, CHEN Li. A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran[J]. Applied Energy, 2023, 350: 121604. |