[1] 任露泉,梁云虹. 仿生学导论[M]. 北京:科学出版社, 2016. REN Luquan, LIANG Yunhong. The introduction of bionics[M]. Beijing: Science Press, 2016. [2] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent , self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. [3] BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 2011, 56(1): 1-108. [4] FENG X J , JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23): 3063-3078. [5] ROACH P, SHIRTCLIFFE N J, NEWTON M I. Progress in superhydrophobic surface development[J]. Soft Matter., 2008, 4(2): 224-240. [6] LI Z X, XING Y J, DAI J J. Superhydrophobic surfaces prepared from water glass and non-fluorinated alkylsilane on cotton substrates[J]. Applied Surface Science, 2008, 254(7): 2131-2135. [7] FENG L, LI S H, LI Y S, et al. Super-hydrophobic surfaces : From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. [8] FU H Q, LIU S, YI L L, et al. A durable and self-cleaning superhydrophobic surface prepared by precipitating flower-like crystals on a glass-ceramic surface[J]. Materials, 2020, 13(7): 1642-1654. [9] LIU K S, JIANG L. Metallic surfaces with special wettability[J]. Nanoscale, 2011, 3(3): 825-838. [10] ZHANG P, LV F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications[J]. Energy , 2015 , 82 : 1068-1087. [11] SELIM M S, EL-SAFTY S A, SHENASHEN M A, et al. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings[J]. Journal of Materials Chemistry B, 2020, 8(17): 3701-3732. [12] 赵永庆. 国内外钛合金研究的发展现状及趋势[J]. 中 国材料进展, 2010, 29(5): 1-8, 24. ZHAO Yongqing. Current situation and development trend of titanium alloys[J]. Materials China, 2010, 29(5): 1-8, 24. [13] 刘全明,张朝晖,刘世锋,等. 钛合金在航空航天及武 器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. LIU Quanming, ZHANG Zhaohui, LIU Shifeng, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. [14] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17(4): 355-360. [15] BUTT H J, VOLLMER D, PAPADOPOULOS P. Super liquid-repellent layers: The smaller the better[J]. Advances in Colloid and Interface Science, 2015, 222: 104-109. [16] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. [17] SMILJANIC M M, LAZIC Z, RADJENOVIC B, et al. Evolution of Si crystallographic planes-etching of square and circle patterns in 25 wt % TMAH[J]. Micromachines, 2019, 10(2): 102-116. [18] 田嘉彤,冯仕猛,王坤霞. 单晶硅表面金字塔生长过程 的实验研究[J]. 光子学报, 2011, 40(10): 1505-1508. TIAN Jiatong, FENG Shimeng, WANG Kunxia, et al. Formation process of pyramids on single crystal Si surface[J]. Acta Photonica Sinica , 2011 , 40(10) : 1505-1508. [19] ZHAO L, ZUO Y H, ZHOU C L, et al. Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx: H layer[J]. Solar Energy, 2011, 85(3): 530-537. [20] TANG Q T, SHEN H L, GAO K, et al. Efficient light trapping of quasi-inverted nanopyramids in ultrathin c-Si through a cost-effective wet chemical method[J]. Rsc Advances, 2016, 6(99): 96686-96692. [21] DESHMUKH S S, GOSWAMI A. Hot embossing of polymers-A review[C]//Proceedings of the 10th International Conference of Materials Processing and Characterization (ICMPC), GLA Univ, Mathura, India, 2020: 405-414. [22] PENG L F, DENG Y J, YI P Y, et al. Micro hot embossing of thermoplastic polymers : A review[J]. Journal of Micromechanics and Microengineering, 2014, 24(1): 013001. [23] HO A Y Y, VAN E L, LIM C T, et al. Lotus bioinspired superhydrophobic , self-cleaning surfaces from hierarchically assembled templates[J]. Journal of Polymer Science Part B-Polymer Physics, 2014, 52(8): 603-609. [24] XU J, XING G N, SHAN D B, et al. An evaluation of formability using micro-embossing on an ultrafinegrained magnesium AZ31 alloy processed by highpressure torsion[C]//Proceedings of the 4th International Conference on New Forming Technology (ICNFT), Glasgow, England, 2015: 09005. [25] XU J, LI J W, SHAN D B, et al. Strain softening mechanism at meso scale during micro-compression in an ultrafine-grained pure copper[J]. AIP Advances, 2015, 5(9): 097147. [26] XU J , SU Q , SHAN D B , et al. Sustainable micro-manufacturing of superhydrophobic surface on ultrafine-grained pure aluminum substrate combining micro-embossing and surface modification[J]. Journal of Cleaner Production, 2019, 232: 705-712. [27] WANG C Y, GROENZIN H, SHULTZ M J. Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation : Trace hydrocarbons and hydroxyl groups[J]. Langmuir, 2003, 19(18): 7330-7334. [28] FINNIE K S, CASSIDY D J, BARTLETT J R, et al. IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films[J]. Langmuir, 2001, 17(3): 816-820. [29] GAO L C , MCCARTHY T J. The “lotus effect” explained : Two reasons why two length scales of topography are important[J]. Langmuir, 2006, 22(7): 2966-2967. |