[1] 金磊,祝强,赵军,等. 热等静压在钛合金近净成形领 域的发展及应用[J]. 铸造, 2019, 68(8): 885-891. JIN Lei, ZHU Qiang, ZHAO Jun, et al. Development and applications of hot isostatic pressing in the field of near-net shape forming of titanium alloys[J]. Foundry, 2019, 68(8): 885-891. [2] 刘文彬,梁超,陈伟,等. 航空航天用粉末钛合金的热 等静压工艺研究[J]. 材料研究与应用, 2019, 13(3): 229-235. LIU Wenbin, LIANG Chao, CHEN Wei, et al. Research on hot isostatic pressing process of powdered titanium alloys for aerospace applications[J]. Materials Research and Application, 2019, 13(3): 229-235. [3] 刘玉峰, 刘娜, 郑亮, 等. HIP 温度和粉末粒度对 PM TiAl 合金组织和性能的影响[J]. 稀有金属材料与工程, 2019, 48(10): 3227-3233. LIU Yufeng, LIU Na, ZHENG Liang, et al. The influence of HIP temperature and powder particle size on the microstructure and properties of PM TiAl alloy[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3227-3233. [4] 朱文进,朴荣勋,王文松. 基于 ABAQUS 的近 α 型 Ti-1100 合金热变形有限元分析[J]. 钛工业进展, 2023, 40(5): 1-8. ZHU Wenjin, PU Rongxun, WANG Wensong. Finite element analysis of hot deformation of near-alpha Ti-1100 alloy based on ABAQUS[J]. Titanium Industry Progress, 2023, 40(5): 1-8. [5] 徐磊,郭瑞鹏,吴杰,等. 钛合金粉末热等静压近净成 形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552. XU Lei, GUO Ruipeng, WU Jie, et al. Progress in hot isostatic pressing technology of titanium alloy powder[J]. Acta Metallurgica Sinica, 2018, 54(11): 1537-1552. [6] 马强. 国外钛粉末冶金结构合金产品现状及其应用[J]. 湖南冶金, 1995(2): 60-63. MA Qiang. Status of foreign titanium powder metallurgy structural alloy products and applications[J]. Metal Materials and Metallurgy Engineering, 1995(2): 60-63. [7] BACCINO R, MORET F, PELLERIN F, et al. High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process[J]. Materials & Design, 2000, 21(4): 345-350. [8] 刘文彬,陈伟,王铁军,等. 粉末钛合金的热等静压技 术研究进展[J]. 粉末冶金工业, 2018, 28(2): 1-7. LIU Wenbin, CHEN Wei, WANG Tiejun, et al. Research progress of hot isostatic pressing technology of titanium alloy powder[J]. Powder Metallurgy Industry, 2018, 28(2): 1-7. [9] KIM H S. Densification mechanisms during hot isostatic pressing of stainless steel powder compacts[J]. Journal of Materials Processing Technology, 2002, 123(2): 319-322. [10] SANCHEZ L, OUEDRAOGO E, DELLIS C, et al. Influence of container on numerical simulation of hot isostatic pressing : Final shape profile comparison[J]. Powder Metallurgy, 2004, 47(3): 253-260. [11] HASSANIN H, ESSA K, QIU C, et al. Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing[J]. Rapid Prototyping Journal, 2017, 23(4): 720-726. [12] ABDELHAFEEZ A M, ESSA K E A. Influences of powder compaction constitutive models on the finite element simulation of hot isostatic pressing[J]. Procedia CIRP, 2016, 55: 188-193. [13] QIU C, ADKINS N J E, HASSANIN H, et al. In-situ shelling via selective laser melting : Modelling and microstructural characterisation[J]. Materials & Design, 2015, 87: 845-853. [14] YOU D, WANG Y, YANG C, et al. Comparative analysis of the hot-isostatic-pressing densification behavior of atomized and milled Ti6Al4V powders[J]. Journal of Materials Research and Technology , 2020 , 9(3) : 3091-3108. [15] 陆恒,魏青松,薛鹏举,等. Inconel625 粉末盘热等静 压近净成形过程模拟与验证[J]. 中国机械工程, 2013, 24(19): 2675-2680. LU Heng, WEI Qingsong, XUE Pengju, et al. Simulation and verification of near-net shape forming process of inconel 625 powder disk by hot isostatic pressing[J]. China Mechanical Engineering, 2013, 24(19): 2675-2680. [16] ELRAKAYBY H , KIM H , HONG S , et al. An investigation of densification behavior of nickel alloy powder during hot isostatic pressing[J]. Advanced Powder Technology, 2015, 26(5): 1314-1318. [17] ESSA K, KHAN R, HASSANIN H, et al. An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83: 1835-1845. [18] JEON Y C, KIM K T. Near-net-shape forming of 316L stainless steel powder under hot isostatic pressing[J]. International Journal of Mechanical Sciences, 1999, 41(7): 815-830. [19] VAN NGUYEN C, BEZOLD A, BROECKMANN C. Anisotropic shrinkage during hip of encapsulated powder[J]. Journal of Materials Processing Technology, 2015, 226: 134-145. [20] VAN NGUYEN C, BEZOLD A, BROECKMANN C. Inclusion of initial powder distribution in FEM modelling of near net shape PM hot isostatic pressed components[J]. Powder Metallurgy, 2014, 57(4): 295-303. [21] SAMAROV V. 60 Years after Battelle: Why to HIP, What to HIP and How to HIP? Science and technology behind the wall of an autoclave[C]//HIP17–12th International Conference on Hot Isostatic Pressing, Sydney, 2017. [22] GILLIA O, BOIREAU B, BOUDOT C, et al. Modelling and computer simulation for the manufacture by powder HIPing of blanket shield components for ITER[J]. Fusion Engineering and Design , 2007 , 82(15-24): 2001-2007. [23] ARGENTO C, BOUVARD D. Modeling the effective thermal conductivity of random packing of spheres through densification[J]. International Journal of Heat and Mass Transfer, 1996, 39(7): 1343-1350. |