[1] GANGSAR P , PANDEY R K , CHOUKSEY M. Unbalance detection in rotating machinery based on support vector machine using time and frequency domain vibration features[J]. Noise & Vibration Worldwide, 2021, 52(4-5): 75-85. [2] SAJID S, HALEEM A, BAHL S, et al. Data science applications for predictive maintenance and materials science in context to Industry 4.0[J]. Materials Today: Proceedings, 2021, 45(6): 4898-4905. [3] OCHELLA S, SHAFIEE M, DINMOHAMMADI F. Artificial intelligence in prognostics and health management of engineering systems[J]. Engineering Applications of Artificial Intelligence, 2022, 108: 104552. [4] 程哲,韦磊,程军圣,等. 基于演员-评论家结构的深 度强化学习齿轮箱智能故障诊断方法[J]. 失效分析与 预防, 2023, 18(3): 141-148, 200. CHENG Zhe, WEI Lei, CHENG Junsheng, et al. Deep reinforcement learning gearbox intelligent fault diagnosis method based on actor-critic structure[J]. Failure Analysis and Prevention, 2023, 18(3): 141-148, 200. [5] 邓飞跃. 基于自适应谐波小波和能量熵的转子系统故 障诊断研究[J]. 中国测试, 2016, 42(8): 103-107. DENG Feiyue. Fault diagnosis of rotor system based on adaptive harmonic wavelet and energy entropy[J]. China Measurement & Test, 2016, 42(8): 103-107. [6] 刘仁伟,岳林. 基于双谱熵和聚类分析的转子系统故障 诊断[J]. 振动、测试与诊断, 2023, 43(1): 188-193, 205. LIU Renwei, YUE Lin. Rotor system fault diagnosis based on bispectrum entropy and clustering analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(1): 188-193, 205. [7] 高玉才,付忠广,谢玉存,等. 改进型 LeNet-5 方法在 转子系统故障诊断中的应用研究[J]. 汽轮机技术, 2021, 63(6): 445-447, 454. GAO Yucai, FU Zhongguang, XIE Yucun, et al. Research on the application of improved LeNet-5 method in rotor system fault diagnosis[J]. Turbine Technology, 2021, 63(6): 445-447, 454. [8] LIU Shucong, WANG Hongjun, TANG Jingpeng, et al. Research on fault diagnosis of gas turbine rotor based on adversarial discriminative domain adaption transfer learning[J]. Measurement, 2022, 196: 111174. [9] HE Zhiyi, SHAO Haidong, ZHONG Xiang, et al. An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE[J]. Advanced Engineering Informatics, 2020, 46: 101150. [10] JIGYASU R, SHRIVASTAVA V, SINGH S, et al. Transfer learning based bearing and rotor fault diagnosis of induction motor[C]// 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), April 28-29, 2022, Noida. India: IEEE, 2022: 2628-2632. [11] 贾思祥,孙丁一,毛刚,等. 基于对抗熵的转子系统跨 工况故障诊断方法[J]. 机械工程学报, 2023, 59(15): 110-120. JIA Sixiang, SUN Dingyi, MAO Gang, et al. Adversarial entropy based fault diagnosis method for rotor system across different working conditions[J]. Journal of Mechanical Engineering, 2023, 59(15): 110-120. [12] XIAO Yang, WANG Qingfeng, WANG Shuai, et al. Research on a multisource domain improved fault diagnosis method of the rotor system[J]. IEEE Access, 2022, 10: 85399-85415. [13] JIA Feng, LEI Yaguo, LU Na, et al. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J]. Mechanical Systems and Signal Processing, 2018, 110: 349-367. [14] 邵海东,林健,闵志闪,等. 分布外样本干扰下基于改 进半监督原型网络的齿轮箱跨域故障诊断[J]. 机械工 程学报, 2024, 60(4): 212-221. SHAO Haidong, LIN Jian, MIN Zhishan, et al. Improved semi-supervised prototype network for cross-domain fault diagnosis of gearbox under out-of-distribution interference samples[J]. Journal of Mechanical Engineering, 2024, 60(4): 212-221. [15] MA Chenyang, LI Yongbo, WANG Xianzhi, et al. Early fault diagnosis of rotating machinery based on composite zoom permutation entropy[J]. Reliability Engineering and System Safety, 2023, 230: 108967. [16] KE Yun, SONG Enzhe, CHEN Yanzhen, et al. Multiscale bidirectional diversity entropy for diesel injector fault-type diagnosis and fault degree diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6503410. [17] HU Qin, SI Xiaosheng, QIN Aisong, et al. Balanced adaptation regularization based transfer learning for unsupervised cross-domain fault diagnosis[J]. IEEE Sensors Journal, 2022, 22(12): 12139-12151. [18] 候双珊,郑近德,潘海洋,等. 基于复合多尺度交叉模 糊熵的行星齿轮箱故障诊断[J]. 振动与冲击, 2023, 42(20): 130-135, 171. HOU Shuangshan, ZHENG Jinde, PAN Haiyang, et al. Flanetary gearbox fault diagnosis based on composite multi-scale cross fuzzy entropy[J]. Journal of Vibration and Shock, 2023, 42(20): 130-135, 171. [19] WANG Shun, LI Yongbo, NOMAN K, et al. Cumulative spectrum distribution entropy for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2024, 206: 110905. [20] 赵柄锡,冀大伟,袁奇,等. 采用时域与时频域联合特 征空间的转子系统碰磨故障诊断[J]. 西安交通大学学 报, 2020, 54(1): 75-84. ZHAO Bingxi, JI Dawei, YUAN Qi, et al. Rubbing fault diagnosis of rotor system based on combined feature space in time and time-frequency domains[J]. Journal of Xi’an Jiaotong University, 2020, 54(1): 75-84. [21] 石明宽,赵荣珍. 基于局部边缘判别投影的机械故障诊 断方法[J]. 振动、测试与诊断, 2021, 41(1): 126-132, 204. SHI Mingkuan, ZHAO Rongzhen. A method of mechanical fault diagnosis based on locality margin discriminant projection[J]. Journal of Vibration , Measurement & Diagnosis, 2021, 41(1): 126-132, 204. [22] 邵海东,李伟,刘翊,等. 时变转速下基于双阈值注意 力生成对抗网络和小样本的转子-轴承系统故障诊断[J]. 机械工程学报, 2023, 59(12): 215-224. SHAO Haidong, LI Wei, LIU Yi, et al. Fault diagnosis of rotor-bearing system under time-varying speeds by using dual-threshold attention-embedded GAN and small samples[J]. Journal of Mechanical Engineering, 2023, 59(12): 215-224. [23] 伍济钢,文港,杨康. 改进注意力机制的航空发动机试 验转子系统智能故障诊断[J]. 振动与冲击, 2024, 43(4): 261-269. WU Jigang , WEN Gang , YANG Kang. Improved attention mechanism for intelligent fault diagnosis of experimental rotor systems in aero engines[J]. Journal of Vibration and Shock, 2024, 43(4): 261-269. [24] LIAO Yixiao, HUANG Ruyi, LI Jipu, et al. Dynamic distribution adaptation based transfer network for cross domain bearing fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 52. [25] LIANG Ruijun, RAN Wenfeng, CHEN Yao, et al. Fault diagnosis method for rotating machinery based on multi-scale features[J]. Chinese Journal of Mechanical Engineering, 2023, 36: 141. |