Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (13): 192-212.doi: 10.3901/JME.2025.13.192
LUO Zichao1, LIU Xiubo1, CHENG Wei1, LI Xingong1, XIA Jie2, ZHENG Jun3
Received:
2024-07-12
Revised:
2025-01-18
Published:
2025-08-09
CLC Number:
LUO Zichao, LIU Xiubo, CHENG Wei, LI Xingong, XIA Jie, ZHENG Jun. Review of Tribology and Lubrication for Silicon Carbide Ceramic[J]. Journal of Mechanical Engineering, 2025, 61(13): 192-212.
[1] 董博,余超,邓承继,等. 碳化硅陶瓷导热性能的研究进展[J]. 材料工程,2023,51(1):64-75. DONG Bo,YU Chao,DENG Chengji,et al. Research progress on thermal conductivity of silicon carbide ceramics[J]. Journal of Materials Engineering,2023,51(1):64-75. [2] 李辰冉,谢志鹏,赵林. 碳化硅陶瓷材料烧结技术的研究与应用进展[J]. 陶瓷学报,2020,41(2):137-149 LI Chenran,XIE Zhipeng,ZHAO Lin. Research and application progress of sintering technology of silicon carbide ceramic materials[J]. Journal of Ceramics,2020,41(2):137-149. [3] 吴彼,张振波,李曙. 航空发动机材料摩擦学研究进展[J]. 摩擦学学报,2023,43(10):1099-1117. WU Bi,ZHANG Zhenbo,LI Shu. Research progress in tribology of aero-engine materials[J]. Tribology,2019,43(10):1099-1117. [4] 董从林,白秀琴,严新平,等. 海洋环境下的材料摩擦学研究进展与展望[J]. 摩擦学学报,2013,33(3):311-320. DONG Conglin,BAI Xiuqin,YAN Xinping,et al. Research progress and prospect of materials tribology in marine environment[J]. Tribology,2013,33(3):311-320. [5] 谭新峰,雒建斌. 润滑研究进展[J]. 中国机械工程,2020,31(2):145-174,189. TAN Xinfeng,LUO Jianbin. Research progress of lubrication[J]. China Mechanical Engineering,2019,31(2):145-174,189. [6] REJITH R,KESAVAN D,CHAKRAVARTHY P,et al. Bearings for aerospace applications[J]. Tribology International,2023,181:108312. [7] 李云鹤,谭雁清,马廉洁,等. 水润滑陶瓷滑动轴承材料配副摩擦学性能的研究[J]. 轴承,2024(6):73-78. LI Yunhe,TAN Yanqing,MA Zhengjing,et al. Research on tribological properties of water-lubricated ceramic plain bearing materials[J]. Bearing,2024(6):73-78. [8] 张巍. SiC陶瓷自润滑的研究进展与展望[J]. 摩擦学学报, 2024,44(12):1-13. ZHANG Wei. Research progress and prospect of selflubrication of SiC ceramics[J]. Tribology,2024,44(12):1-13. [9] 吕晓仁,钟兵,黄艳斐,等. 超快激光制备金属抗反射表面的研究进展[J]. 中国表面工程,2021,34(6):90-101. LÜ Xiaoren,ZHONG Bing,HUANG Yanfei,et al. Research progress of metal antireflective surfaces prepared by ultrafast laser[J]. China Surface Engineering,201,34(6):90-101. [10] 孟博,马廉洁,陈景强,等. 氧化铝陶瓷在腐蚀环境下的摩擦磨损性能[J]. 轴承,2021(2):19-23. MENG Bo,MA Jingjing,CHEN Jingqiang,et al. Friction and wear properties of alumina ceramics in corrosive environment[J]. Bearing,2021(2):19-23. [11] LINCE J R. Effective Application of solid lubricants in spacecraft mechanisms[J]. Lubricants,2020,8(7):74. [12] 王志文,刘秀波,周安,等. 表面技术提高农林机械耐磨性能及应用研究进展[J]. 中国表面工程,2024,37(4):102-116. WANG Zhiwen,LIU Xiubo,ZHOU An,et al. Research progress on improving wear resistance of agricultural and forestry machinery by surface technology and its application[J]. China Surface Engineering,2024,37(4):102-116. [13] AMANOV A,PYUN Y,KIM J,et al. Enhancement in wear resistance of sintered silicon carbide at various temperatures[J]. Tribology International,2014,74:28-37. [14] 李淑钰,刘应瑞,郭鹏,等. 海洋环境下物理气相沉积氮/碳基抗磨蚀涂层的研究进展[J]. 表面技术,2021,50(7):44-56. LI Shuyu,LIU Yingrui,GUO Peng,et al. Research progress of nitrogen/carbon-based anti-abrasive coatings by physical vapor deposition in marine environment[J]. Surface Technology,2021,50(7):44-56. [15] 张修峰,邵国栋,刘传成,等. 碳化硅陶瓷基合材料常用的特种加工技术:综述[J]. 机械工程学报,2023,59(1):199-218. ZHANG Xiufeng,SHAO Guodong,LIU Chuancheng,et al. Common special processing techniques of silicon carbide ceramic matrix materials:A review[J]. Journal of Mechanical Engineering,2023,59(1):199-218. [16] 宋伟,李凯民,丁雪兴,等. 浸渍石墨在陶瓷摩擦副下的摩擦腐蚀行为研究[J]. 摩擦学学报2024,44(6):775-788. SONG Wei,LI Kaimin,DING Xuexing,et al. Study on the frictional corrosion behavior of impregnated graphite in ceramic friction pairs[J]. Tribology,24,44(06):775-788. [17] 魏万鑫,苏云峰,樊恒中,等. 氮化硅陶瓷轴承球的滚动摩擦磨损特性与损伤行为[J]. 摩擦学学报,2024,44(9):1256-1265. WEI Wanxin,SU Yunfeng,FAN Hengzhong,et al. Rolling friction and wear characteristics and damage behavior of silicon nitride ceramic bearing Ball[J]. Tribology,2019,44(9):1256-1265. [18] 汪彩芬,徐俊,白彬,等. 氮化硅陶瓷摩擦磨损性能研究进展[J]. 材料导报,2013,27(S2):319-322,333. WANG Caifen,XU Jun,BAI Bin,et al. Research progress on friction and wear properties of silicon nitride ceramics[J]. Materials Review,2013,27(S2):319-322,333. [19] ANDERSSON P,BLOMBERG A. Instability in the tribochemical wear of silicon carbide in unlubricated sliding contacts[J]. Wear,1994,174(1-2):1-7. [20] XU J,KATO K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction[J]. Wear,2000,245(1-2):61-75. [21] LI J F,HUANG J Q,TAN S H,et al. Tribological properties of silicon carbide under water-lubricated sliding[J]. Wear,1998,218(2):167-171. [22] XU J,KATO K,HIRAYAMA T. The transition of wear mode during the running-in process of silicon nitride sliding in water[J]. Wear,1997,205(1-2):55-63. [23] GATES R S,HSU S M. Tribochemistry between water and Si3N4 and SiC:induction time analysis[J]. Tribology Letters,2004,17(3):399-407. [24] PRESSER V,NICKEL K G,KRUMMHAUER O,et al. A model for wet silicon carbide tribo-corrosion[J]. Wear,2009,267(1-4):168-176. [25] AN D. Investigation on the mild to severe wear transition for AZ system magnesium alloys[J]. Journal of Mechanical Engineering,2016,52(6):79. [26] SHARMA S K,KUMAR B V M,KIM Y W. Tribological behavior of silicon carbide ceramics - A Review[J]. Journal of the Korean Ceramic Society,2016,53(6):581-596. [27] WANG Y,HSU S M. Wear and wear transition modeling of ceramics[J]. Wear,1996,195(1-2):35-46. [28] KATO K,ADACHI K. Wear of advanced ceramics[J]. Wear,2002,253(11-12):1097-1104. [29] DONG K,SONG Y,BIAN G,et al. Tribocorrosion behavior of TC18 titanium alloy:A discussion about the interaction between galvanic corrosion and wear[J]. Tribology International,2024,192:109292. [30] PRESSER V,KRUMMHAUER O,NICKEL K G,et al. Tribological and hydrothermal behaviour of silicon carbide under water lubrication[J]. Wear,2009,266(7-8):771-781. [31] CINIERO A,LE ROUZIC J,BAIKIE I,et al. The origins of triboemission -- correlating wear damage with electron emission[J]. Wear,2017,374-375:113-119. [32] CHEN M,KATO K,ADACHI K. Friction and wear of self-mated SiC and Si3N4 sliding in water[J]. Wear,2001,250(1-12):246-255. [33] 翟文杰. 摩擦电化学与摩擦电化学研磨抛光研究进展[J]. 摩擦学学报,2006,26(1):92-96. ZHAI Wenjie. Research progress of triboelectrochemistry and triboelectrochemical grinding and polishing[J]. Tribology,2006,26(1):92-96. [34] KAILER A,AMANN T,KRUMMHAUER O,et al. Influence of electric potentials on the tribological behaviour of silicon carbide[J]. Wear,2011,271(9-10):1922-1927. [35] WANG Y. Thermal elastohydrodynamic lubrication property analysis of water-lubricated tenmat bearing considering debris and surface roughness[J]. Journal of Mechanical Engineering,2017,53(3):121. [36] WOJCIECHOWSKI L,KUBIAK K J,MATHIA T G. Roughness and wettability of surfaces in boundary lubricated scuffing wear[J]. Tribology International,2016,93:593-601. [37] EDACHERY V,SWAMYBABU V,ADARSH D,et al. Influence of surface roughness frequencies and roughness parameters on lubricant wettability transitions in micro-nano scale hierarchical surfaces[J]. Tribology International,2022,165:107316. [38] 李剑锋,黄静琪,谭寿洪,等. 增韧SiC陶瓷在蒸馏水润滑下的摩擦学特性[J]. 硅酸盐学报,1998(3):33-40. LI Jianfeng,HUANG Jingqi,TAN Shouhong,et al. Tribological properties of toughened SiC ceramics under distilled water lubrication[J]. Journal of the Chinese Ceramics Society,1998(3):33-40. [39] WANG X,KATO K,ADACHI K. The Critical Condition for the transition from HL to ML in water lubricated SiC[J]. Tribology Letters,2004,16(4):253-258. [40] JORDI L,ILIEV C,FISCHER T E. Lubrication of silicon nitride and silicon carbide by water:Running in,wear and operation of sliding bearings[J]. Tribology Letters,2004,17(3):367-376. [41] CHEN M,KATO K,ADACHI K. The comparisons of sliding speed and normal load effect on friction coefficients of self-mated Si3N4 and SiC under water lubrication[J]. Tribology International,2002,35(3):129-135. [42] ZHOU F,KATO K,ADACHI K. Friction and wear properties of CNx/SiC in water lubrication[J]. Tribology Letters,2005,18(2):153-163. [43] AMANN T,KAILER A,HERRMANN M. Influence of electrochemical potentials on the tribological behavior of silicon carbide and diamond-coated silicon carbide[J]. Journal of Bio- and Tribo-Corrosion,2015,1(4):30. [44] JOHN M,MENEZES P L. Self-lubricating materials for extreme condition applications[J]. Materials,2021,14(19):5588. [45] ZHOU Y,HIRAO K,YAMAUCHI Y,et al. Tribological properties of silicon carbide and silicon carbide–graphite composite ceramics in sliding contact[J]. Journal of the American Ceramic Society,2003,86(6):991-1002. [46] LLORENTE J,ROMÁN-MANSO B,MIRANZO P,et al. Tribological performance under dry sliding conditions of graphene/silicon carbide composites[J]. Journal of the European Ceramic Society,2016,36(3):429-435. [47] ZISHAN C,HEJUN L,QIANGANG F,et al. Tribological behaviors of SiC/h-BN composite coating at elevated temperatures[J]. Tribology International,2012,56:58-65. [48] LI F,ZHU S,CHENG J,et al. Tribological properties of Mo and CaF2 added SiC matrix composites at elevated temperatures[J]. Tribology International,2017,111:46-51. [49] 焦浩文,陈冰,左彬. C/SiC复合材料的制备及加工技术研究进展[J]. 航空材料学报,2021,41(1):19-34. JIAO Haowen,CHEN Bing,ZUO Bin. Research progress on preparation and processing technology of C/SiC composites[J]. Journal of Aeronautical Materials,201,41(1):19-34. [50] DIAO Q,ZOU H,REN X,et al. A focused review on the tribological behavior of C/SiC composites:Present status and future prospects[J]. Journal of the European Ceramic Society,2023,43(9):3875-3904. [51] 张军战,楼建军,徐永东,等. 不同结构C/SiC复合材料的摩擦磨损性能研究[J]. 摩擦学学报,2006,26(3):218-222. ZHANG Junzhan,LOU Jianjun,XU Yongdong,et al. Tribological and wear properties of C/SiC composites with different structures[J]. Tribology,2006,26(3):218-222. [52] FAN S,ZHANG L,CHENG L,et al. Microstructure and frictional properties of C/SiC brake materials with sandwich structure[J]. Ceramics International,2011,37(7):2829-2835. [53] WEI J,LIN B,WANG H,et al. Friction and wear characteristics of carbon fiber reinforced silicon carbide ceramic matrix (Cf/SiC) composite and zirconia (ZrO2) ceramic under dry condition[J]. Tribology International,2018,119:45-54. [54] YANG Y,ZHU T,SUN N,et al. Mechanical and tribological properties of SiC whisker‐reinforced SiC composites via oscillatory pressure sintering[J]. International Journal of Applied Ceramic Technology,2023,20(4):2499-2510. [55] TANG H,ZENG X,XIONG X,et al. Mechanical and tribological properties of short-fiber-reinforced SiC composites[J]. Tribology International,2009,42(6):823-827. [56] CAI Y,FAN S,YIN X,et al. Effects of graphitization degree in three‐dimensional needled C/SiC composites on tribological properties[J]. International Journal of Applied Ceramic Technology,2011,8(2):317-328. [57] JIANG G,YANG J,XU Y,et al. Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration[J]. Composites Science and Technology,2008,68(12):2468-2473. [58] KISHORE A,JOHN M,RALLS A M,et al. Ultrasonic nanocrystal surface modification:Processes,characterization,properties,and applications[J]. Nanomaterials,2022,12(9):1415. [59] GUJBA A K,REN Z,DONG Y,et al. Effect of ultrasonic nanocrystalline surface modification on the water droplet erosion performance of Ti 6Al 4V[J]. Surface and Coatings Technology,2016,307:157-170. [60] LIU R,YUAN S,LIN N,et al. Application of ultrasonic nanocrystal surface modification (UNSM) technique for surface strengthening of titanium and titanium alloys:A mini review[J]. Journal of Materials Research and Technology,2021,11:351-377. [61] AMANOV A. Frictional behavior of duplex nano-corrugated and nanostructured Cu alloy produced by UNSM[J]. Procedia Engineering,2013,68:491-496. [62] KHERADMANDFARD M,KASHANI-BOZORG S F,LEE J S,et al. Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification[J]. Journal of Alloys and Compounds,2018,762:941-949. [63] EFE Y,KARADEMIR I,HUSEM F,et al. Enhancement in microstructural and mechanical performance of AA7075 aluminum alloy via severe shot peening and ultrasonic nanocrystal surface modification[J]. Applied Surface Science,2020,528:146922. [64] MA C,ANDANI M T,QIN H,et al. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification[J]. Journal of Materials Processing Technology,2017,249:433-440. [65] LISTYAWAN T A,LEE H,PARK N,et al. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process[J]. Journal of Materials Science & Technology,2020,57:123-130. [66] AMANOV A,PYUN Y,KIM J,et al. Enhancement in wear resistance of sintered silicon carbide at various temperatures[J]. Tribology International,2014,74:28-37. [67] AMANOV A,KIM J,PYUN Y,et al. Wear mechanisms of silicon carbide subjected to ultrasonic nanocrystalline surface modification technique[J]. Wear,2015,332-333:891-899. [68] 王迪,邓国威,杨永强,等. 金属异质材料增材制造研究进展[J]. 机械工程学报,2021,57(1):186-198. WANG Di,DENG Guowei,YANG Yongqiang,et al. Research progress in additive manufacturing of metallic heterogeneous materials[J]. Journal of Mechanical Engineering,2021,57(1):186-198. [69] AMANOV A,KARIMBAEV R. Effect of ultrasonic nanocrystal surface modification temperature:Microstructural evolution,mechanical properties and tribological behavior of silicon carbide manufactured by additive manufacturing[J]. Surface and Coatings Technology,2021,425:127688. [70] DU Y,XIE F,WANG J,et al. Dry friction properties of diamond-coated silicon carbide[J]. Materials,2023,16(10):3640. [71] JAHANMIR S,DECKMAN D E,IVES L K,et al. Tribological characteristics of synthesized diamond films on silicon carbide[J]. Wear,1989,133(1):73-81. [72] 王贺,沈建辉,闫广宇,等. 甲烷浓度对碳化硅基底金刚石薄膜摩擦性能影响[J]. 人工晶体学报,2021,50(11):2067-2074. WANG He,SHEN Jianhui,YAN Guangyu,et al. Effect of methane concentration on tribological properties of silicon carbide based diamond films[J]. Journal of Synthetic Crystals,2021,50(11):2067-2074. [73] WANG X,SHEN X,ZHAO T,et al. Tribological properties of SiC-based MCD films synthesized using different carbon sources when sliding against Si3N4[J]. Applied Surface Science,2016,369:448-459. [74] CHEN N,PU L,SUN F,et al. Tribological behavior of HFCVD multilayer diamond film on silicon carbide[J]. Surface and Coatings Technology,2015,272:66-71. [75] YAN M,WANG X,ZHANG S,et al. Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication[J]. Tribology International,2020,143:106067. [76] CUI M. Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings[J]. Journal of Mechanical Engineering,2018,54(6):25. [77] AL MAHMUD K A H,KALAM M A,MASJUKI H H,et al. An updated overview of diamond-like carbon coating in tribology[J]. Critical Reviews in Solid State and Materials Sciences,2015,40(2):90-118. [78] CHOUDHURY D,MORITA T,SAWAE Y,et al. A novel functional layered diamond like carbon coating for orthopedics applications[J]. Diamond and Related Materials,2016,61:56-69. [79] ERDEMIR A,FENSKE G R. Tribological performance of diamond and diamondlike carbon films at elevated temperatures[J]. Tribology Transactions,1996,39(4):787-794. [80] YONG Q. Research status of the tribological property of diamond-like carbon films[J]. Journal of Mechanical Engineering,2016,52(11):95. [81] HOFMANN D,KUNKEL S,BEWILOGUA K,et al. From DLC to Si-DLC based layer systems with optimized properties for tribological applications[J]. Surface and Coatings Technology,2013,215:357-363. [82] 闫江山,郭鹏,林乃明,等. 双辉等离子渗铬界面层对类石墨碳基涂层力学及磨蚀性能的影响[J]. 表面技术,2024,53(1):169-181. YAN Jiangshan,GUO Peng,LIN Naiming,et al. Effect of double-glow plasma chromized interfacial layer on mechanical and abrasive properties of graphite-like carbon-based coatings[J]. Surface Technology,2018,53(1):169-181. [83] LIU K,KANG J,ZHANG G,et al. Effect of temperature and mating pair on tribological properties of DLC and GLC coatings under high pressure lubricated by MoDTC and ZDDP[J]. Friction,2021,9(6):1390-1405. [84] DU D,LIU D,YE Z,et al. Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy[J]. Applied Surface Science,2014,313:462-469. [85] 马鹏程,周海斌,鲁晓龙,等. 钨掺杂类石墨涂层/蓖麻油酸固液复合润滑体系的摩擦学性能研究[J]. 摩擦学学报,2025,45(3):1-9. MA Pengcheng,ZHOU Haibin,LU Xiaolong,et al. Tribological properties of tungsten-doped graphite-like coating/ricinoleic acid solid-liquid composite lubrication system[J]. Tribology,2025,45(3):1-9. [86] WANG Y,WANG L,XUE Q. Improving the tribological performances of graphite-like carbon films on Si3N4 and SiC by using Si interlayers[J]. Applied Surface Science,2011,257(23):10246-10253. [87] 唐金琼,孔勇,沈晓冬. 碳化物衍生碳的制备及其应用研究进展[J]. 化工进展,2022,41(2):791-802. TANG Jinqiong,KONG Yong,SHEN Xiaodong. Research progress on preparation and application of carbide-derived carbon[J]. Chemical industry and Engineering Progress ,2022,41(2):791-802. [88] GOGOTSI Y,NIKITIN A,YE H,et al. Nanoporous carbide-derived carbon with tunable pore size[J]. Nature Materials,2003,2(9):591-594. [89] SUI J,LU J. Formulated self-lubricating carbon coatings on carbide ceramics[J]. Wear,2011,271(9-10):1974-1979. [90] CHOI H J,BAE H T,LEE J K,et al. Sliding wear of silicon carbide modified by etching with chlorine at various temperatures[J]. Wear,2009,266(1-2):214-219. [91] ERDEMIR A,KOVALCHENKO A,MCNALLAN M J,et al. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films[J]. Surface and Coatings Technology,2004,188-189:588-593. [92] GAO F,LU J,LIU W. Tribological behavior of carbide-derived carbon coating on SiC polycrystal against SAE52100 steel in moderately humid air[J]. Tribology Letters,2007,27(3):339-345. [93] GORELIK T,URBAN S,FALK F,et al. Carbon onions produced by laser irradiation of amorphous silicon carbide[J]. Chemical Physics Letters,2003,373(5-6):642-645. [94] AONO Y,ANDO S,HIRATA A. Microtribological modification of silicon carbide surface by laser irradiation[J]. Precision Engineering,2016,43:270-276. [95] 王东伟,李发强,黄起昌,等. 表面织构对滑动电接触界面摩擦学行为的影响[J]. 表面技术,2024,53(9):137-147. WANG Dongwei,LI Faqiang,HUANG Qichang,et al. Influence of surface texture on tribological behavior of sliding electrical contact interface[J]. Surface Technology,2019,53(9):137-147. [96] 赵立新,章宝玲,刘洋,等. 基于表面织构技术改善摩擦学性能的研究进展[J]. 摩擦学学报,2022,42(1):202-224. ZHAO Lixin,ZHANG Baoling,LIU Yang,et al.Research progress of improving tribological properties based on surface texture technology[J]. Tribology,2022,42(1):202-224. [97] MURZIN S,MELNIKOV A,VASILIEV N,et al. Determining ways of improving the tribological properties of the silicon carbide ceramic using a pulse-periodic laser treatment[J]. Computer Optics,2015,39(1):64-69. [98] XING Y,DENG J,WU Z,et al. High friction and low wear properties of laser-textured ceramic surface under dry friction[J]. Optics & Laser Technology,2017,93:24-32. [99] MURZIN S P,BALYAKIN V B. Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings[J]. Optics & Laser Technology,2017,88:96-98. [100] CHEN X,WANG C,JIANG J,et al. Effect of picosecond laser texturing on the friction behavior of silicon carbide in hybrid ceramic bearings under dry and water lubrication[J]. Ceramics International,2023,49(18):29857-29869. [101] WANG X,ADACHI K,OTSUKA K,et al. Optimization of the surface texture for silicon carbide sliding in water[J]. Applied Surface Science,2006,253(3):1282-1286. [102] 王鹏洋,龙威,赵章行,等. SiC表面水滴型微织构的水润滑特性研究[J]. 表面技术,2024,53(1):96-104. WANG Pengyang,LONG Wei,ZHAO Zhangxing,et al. Study on water lubrication characteristics of SiC surface droplet microtexture[J]. Surface Technology,2019,53(1):96-104 [103] TOMIZAWA H,FISCHER T E. Friction and wear of silicon nitride and silicon carbide in water:hydrodynamic lubrication at low sliding speed obtained by tribochemical wear[J]. ASLE Transactions,1987,30(1):41-46. [104] STREY N F,RAMOS R,SCANDIAN C. Superlubricity and running-in wear maps of water-lubricated dissimilar ceramics[J]. Wear,2022,498-499:204328. [105] 李杰,王超磊,刘玉德,等. 激光微织构与自组装对铝合金表面润湿性的影响[J]. 材料工程,2018,46(1):53-60. LI Jie,WANG Chaolei,LIU Yude,et al. Effect of laser micro-texture and self-assembly on surface wettability of aluminum alloy[J]. Journal of Materials Engineering,2018,46(1):53-60. [106] HUANG J,CAI L,ZHANG W,et al. Influence of surface structure/wettability on tribological properties of titanium[J]. Tribology International,2022,174:107747. [107] MA J,LIU Y,ZHANG N,et al. Wettability transition and tribological properties of hydrophobic alloy surfaces prepared by one-step method[J]. Tribology International,2023,178:108020. [108] MA C,BAI S,MENG Y,et al. Hydrophilic control of laser micro-square-convexes SiC surfaces[J]. Materials Letters,2013,109:316-319. [109] SERLES P,NIKUMB S,BORDATCHEV E. Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing[J]. Journal of Laser Applications,2018,30(3):032505. [110] 董博,邓承继,余超,等. 烧成温度对反应烧结碳化硅蜂窝陶瓷的性能调控[J]. 陶瓷学报,2023,44(1):89-94. DONG Bo,DENG Chengji,YU Chao,et al. Control of sintering temperature on properties of react-sintered silicon carbide honeycomb ceramics[J] Journal of Ceramics,2023,44(1):89-94 [111] 刘敏. 反应烧结SiC陶瓷摩擦磨损性能研究[D]. 西安:西安理工大学,2005. LIU Min. Study on friction and wear properties of reaction-sintered SiC ceramics [D]. Xi’an:Xi’an University of Technology,2005. [112] LU Z L,ZHOU Y X,ZHANG M,et al. Dry friction behaviour of reaction-bonded silicon carbide at high temperature[J]. Key Engineering Materials,2007,336-338:2472-2474. [113] SANG K,LIU L,JIN Z. Improvements on dry friction and wear properties for reaction-sintered silicon carbide by the matching size of SiC particles[J]. Materials & Design,2007,28(2):735-738. [114] 李文魁,桑可正,金志浩,等. 颗粒级配对SiC-Si复相陶瓷材料摩擦性能的影响[J]. 西安石油大学学报,2005(2):61-64. LI Wenkui,SANG Kezheng,JIN Zhihao,et al. Effect of particle size matching on frictional properties of SiC-Si composite ceramics[J]. Journal of Xi’an Shiyou University,2005(2):61-64. [115] SANG K,JIN Z. Unlubricated friction of reaction-sintered silicon carbide and its composite with nickel[J]. Wear,2000,246(1-2):34-39. [116] 许洁,周小兵,徐凯,等. 高致密碳化硅陶瓷的低温液相烧结[J]. 陶瓷学报,2022,43(3):448-454. XU Jie,ZHOU Xiaobing,XU Kai,et al. Low temperature liquid phase sintering of high density silicon carbide ceramics[J]. Journal of Ceramics,202,43(3):448-454. [117] BORRERO-LÓPEZ O,ORTIZ A L,GUIBERTEAU F,et al. Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC:An overview[J]. Journal of the European Ceramic Society,2007,27(11):3351-3357. [118] ORTIZ A L,BORRERO-LÓPEZ O,QUADIR M Z,et al. A route for the pressureless liquid-phase sintering of SiC with low additive content for improved sliding-wear resistance[J]. Journal of the European Ceramic Society,2012,32(4):965-973. [119] 林盼盼,林金城,于迪,等. 放电等离子体烧结技术在材料连接领域的应用现状[J]. 焊接学报,2022,43(11):15-21. LIN Panpan,LIN Jincheng,YU Di,et al. Application of discharge plasma sintering technology in the field of material bonding[J]. Transactions of The China Welding Institution,2022,43(11):15-21. [120] CIUDAD E. Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3+5Al2O3 or Y3Al5O12 additives[J]. Scripta Materialia,2013. [121] GUTIERREZ-MORA F,LARA A,MUÑOZ A,et al. Influence of microstructure and crystallographic phases on the tribological properties of SiC obtained by spark plasma sintering[J]. Wear,2014,309(1-2):29-34. |
[1] | LIU Tianyu, XU Shuo, WANG Haolong, ZHAO Hanlei, LI Tiejun, LIU Jinyue. Modeling Method of Mobile Manipulators Considering Flexible Tire-ground Interactions [J]. Journal of Mechanical Engineering, 2025, 61(9): 252-263. |
[2] | YANG Tingli, LI Ju, LUO Yufeng, SHEN Huiping. Methodological Thinking on the Construction and Development of Advanced Mechanism Studies [J]. Journal of Mechanical Engineering, 2025, 61(5): 138-152. |
[3] | JIANG Xiangyu, FENG Yixiong, ZHANG Zhifeng, SONG Xiuju, HONG Zhaoxi, HU Bingtao, TAN Jianrong. Evolvable Remaining Useful Life Estimation of Nuclear Power Equipment Under Human-cyber-physical Collaboration [J]. Journal of Mechanical Engineering, 2025, 61(4): 302-313. |
[4] | HU Bingtao, ZHONG Ruirui, FENG Yixiong, YANG Chen, WANG Tianyue, HONG Zhaoxi, TAN Jianrong. Digital Shop Floor Manufacturing Capability Modeling and Adaptive Scheduling in Human-cyber-physical Interconnected Environment [J]. Journal of Mechanical Engineering, 2025, 61(3): 23-39. |
[5] | HU Weifei, DENG Xiaoyu, ZHANG Tongzhou, LIU Zhenyu, TAN Jianrong. Multiphysics Coupling Simulation and Analysis of Ultrasonic Welding Considering Variable Friction and Acoustic Softening Effects [J]. Journal of Mechanical Engineering, 2025, 61(2): 86-96. |
[6] | CHEN Yangjian, YI Jun, WANG Zongwei, CHEN Bing, DENG Hui. Multi-physical Field Coupling Simulation and Experimental Research on Electrolyte Plasma Polishing [J]. Journal of Mechanical Engineering, 2025, 61(1): 360-370. |
[7] | CHEN Zhaojie, XIE Jin, LIU Junhan, XIONG Changxin, LI Difan. Study on Impulse-discharge Driven Abrasive Flow Assisted Grinding of Monocrystalline SiC [J]. Journal of Mechanical Engineering, 2024, 60(9): 383-392. |
[8] | HAN Jianchao, ZHANG Mengfei, WANG Bin, GUO Shenghui, JIA Yi, WANG Tao. Analysis of Electroplastic Constitutive Equation and Multi-physical Field Coupling of Titanium Alloy [J]. Journal of Mechanical Engineering, 2024, 60(9): 421-433. |
[9] | DONG Zhigang, WANG Zhongwang, RAN Yichuan, BAO Yan, KANG Renke. Advances in Ultrasonic Vibration-assisted Milling of Carbon Fiber Reinforced Ceramic Matrix Composites [J]. Journal of Mechanical Engineering, 2024, 60(9): 26-56. |
[10] | YIN Zhen, ZHANG Kun, DAI Chenwei, CHENG Jingcai, XUN Hailong, LI Hua. Research on Wheel Wear and Grinding Performance of Elliptical Ultrasonic Vibration Assisted Grinding SiC Ceramics [J]. Journal of Mechanical Engineering, 2024, 60(9): 57-74. |
[11] | LI Jicheng, CHEN Guangjun, XU Jinkai, YU Huadong. Study on Material Damage Mechanism and Surface Quality of C/SiC Composites by Laser-ultrasonic Hybrid Micromachining [J]. Journal of Mechanical Engineering, 2024, 60(9): 189-205. |
[12] | LI Han, ZHANG Cheng, CHEN Jie, AN Qinglong, CHEN Ming. Material Removal Mechanism and Evaluation of Machined Surface Quality of SiCf/SiC Composites by Laser Ablation-assisted Milling [J]. Journal of Mechanical Engineering, 2024, 60(9): 206-217. |
[13] | ZHANG Bonan, HUANG Hui, WU Min. Experimental Study on Friction-induced Chemical-mechanical Composite Machining (FCMM) of 4H-SiC Single Crystal [J]. Journal of Mechanical Engineering, 2024, 60(7): 401-410. |
[14] | WANG Junjiu, LIU Jinyu, HOU Xiujuan, QI Zhenguo, LI Zhimin, LIU Tao. Hybrid Mechanistic and Data-driven Modeling Method of Compliant Assembly Variation Prediction for Train Body [J]. Journal of Mechanical Engineering, 2024, 60(6): 177-186. |
[15] | YAN Ruqiang, XU Wengang, WANG Zhiying, ZHU Qixiang, ZHOU Zheng, ZHAO Zhibin, SUN Chuang, WANG Shibin, CHEN Xuefeng, ZHANG Junhui, XU Bing. Research Status and Challenges on Fault Diagnosis Methodology for Fuel Control System of Aero-engine [J]. Journal of Mechanical Engineering, 2024, 60(4): 3-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||