Experimental Study on the Influence of Third Medium on the Friction Coefficient between Wheel and Rail of High-speed Train
ZHANG Jun1,2, MENG Tongyi2, YAN Shuo2, ZOU Xiaochun3, MA He2
1. School of Mechanical and Electrical Engineering, Beijing Institue of Graphic Communication, Beijing 102600; 2. Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing University of Civil Engineering and Architecture, Beijing 100044; 3. Locomotive and Rolling Stock, College, Kunming Railway Vocational Technical College, Kunming 650208
ZHANG Jun, MENG Tongyi, YAN Shuo, ZOU Xiaochun, MA He. Experimental Study on the Influence of Third Medium on the Friction Coefficient between Wheel and Rail of High-speed Train[J]. Journal of Mechanical Engineering, 2024, 60(18): 310-317.
[1] 金学松,刘启跃. 轮轨摩擦学[M]. 北京:中国铁道出版社,2004. JIN Xuesong,LIU Qiyue. Wheel-rail tribology[M]. Beijing:China Railway Publishing House,2004. [2] WANG W J,ZHANG H F,LIU Q Y,et al. Investigation on adhesion characteristic of wheel/rail under the magnetic field condition[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2016,230(5):611-617. [3] 李群,丁昊昊,师陆冰,等.水基摩擦调节剂作用下轮轨黏着恢复过程[J].中国表面工程,2022,35(1):107-115. LI Qun,DING Haohao,SHI Lubing,et al. Recovery process of wheel/rail adhesion under the action of water-based friction modifier[J].China Surface Engineering,2022,35(1):107-115. [4] 沈明学,刘鹏,周琰,等. 轮轨界面摩擦学转变结构层特性及其研究进展[J]. 摩擦学学报,2021,41(5):773-788. SHEN Mingxue,LIU Peng,ZHOU Yan,et al. Characteristics of wheel-rail interface tribological transformation structural layer and its research progress[J]. Chinese Journal of Tribology,2021,41(5):773-788. [5] 汪洪. 第三介质条件下轮轨粘着特性研究[D]. 成都:西南交通大学,2013. WANG Hong. Study on wheel-rail adhesion characteristics under the condition of third medium[D]. Chengdu:Southwest Jiaotong University,2013. [6] TRUMMER G,BUCKLEY-JOHNSTONE L E,VOLTR P,et al. Wheel-rail creep force model for predicting water induced low adhesion phenomena[J]. Tribology International,2017,109:409-415. [7] CHEN Hua,ISHIDA M,NAKAHARA T. Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness[J]. Wear,2005,258(34):1209-1216. [8] 张军,王雪萍,马贺. 第三介质对轮轨最大静摩擦因数影响的试验[J]. 机械工程学报,2018,54(18):123-128. ZHANG Jun,WANG Xueping,MA He. Test on the influence of the third medium on the maximum static friction factor of the wheel rail[J]. Journal of Mechanical Engineering,2018,54(18):123-128. [9] 李伟,郭欣茹,裴志远,等. 复杂轮轨接触条件下机车牵引/制动性能分析[J]. 四川轻化工大学学报(自然科学版),2022,35(2):46-53. LI Wei,GUO Xinru,PEI Zhiyuan,et al. Analysis of locomotive traction/braking performance under complex wheel-rail contact conditions[J]. Journal of Sichuan University of Light and Chemical Technology(Natural Science Edition),2022,35(2):46-53. [10] 孟凡晖. 基于最优蠕滑率的列车制动防滑控制方法[D].南昌:华东交通大学,2020. MENG Fanhui. Train brake anti-skid control method based on optimal creep slip rate[D]. Nanchang:East China Jiaotong University,2020. [11] Adhesion Working Group. T1046 Review of the risk and opportunities from the application of sand during braking[R]. UK Railway Safety and Standards Board,2015. [12] 李邦国,孙栋栋. 和谐号动车组撒沙装置及控制[J]. 铁道机车车辆,2011,31(5):70-72. LI Bangguo,SUN Dongdong. Sand sprinkling device and control of Harmony EMU[J]. Railway Rolling Stock,2011,31(5):70-72. [13] 王义雄. 动车组转向架撒砂装置及构架端部振动特性及疲劳寿命研究[D]. 北京:北京交通大学,2020. WANG Yixiong. Study on vibration characteristics and fatigue life of bogie sand spreader and end frame of EMU[D]. Beijing:Beijing Jiaotong University,2020. [14] 张振先,谭江,黄双超,等. 复杂运行环境下高速轮轨最佳撒砂增黏策略试验[J]. 中国铁道科学,2020,41(2):123-130. ZHANG Zhenxian,TAN Jiang,HUANG Shuangchao,et al. Experiment on the optimal sand and viscosity strategy of high-speed wheel rail under complex operating environment[J]. China Railway Science,2020,41(2):123-130. [15] 王文健,郭俊,刘启跃. 不同介质作用下轮轨粘着特性研究[J]. 机械工程学报,2012,48(7):100-104. WANG Wenjian,GUO Jun,LIU Qiyue. Study on the adhesion characteristics of wheel rails under the action of different media[J]. Chinese Journal of Mechanical Engineering,2012,48(7):100-104. [16] 杨万,刘佳豪. 电力机车撒砂装置最佳撒砂量计算分析[J]. 电子产品世界,2022,29(4):61-66. YANG Wan,LIU Jiahao. Calculation and analysis of optimal sand sprinkling capacity of sand sprinkling device for electric locomotive[J]. Electronic Products World,2022,29(4):61-66. [17] 王晟晟,陈诚. 国内轨道车辆撒砂装置探讨及展望[J].科学技术创新,2021(8):27-28. WANG Shengsheng,CHEN Cheng. Discussion and prospect of sand sprinkling device for domestic rail vehicles[J]. Science and Technology Innovation,2021(8):27-28. [18] 汪登荣,倪文波. 新型轮轨关系试验台研究[J]. 铁道机车车辆,2012,32(2):53-57. WANG Dengrong,NI Wenbo. Research on the new wheel-rail relationship test bench[J]. Railway Locomotive and Rolling Stock,2012,32(2):53-57. [19] 陈川,余志高. 新型高速轮轨接触疲劳试验机研制[J]. 机械,2014,41(3):1-3,7. CHEN Chuan,YU Zhigao. Development of a new high-speed wheel-rail contact fatigue testing machine[J]. Mechanical,2014,41(3):1-3,7. [20] 严隽耄,王开文,博茂海. 机车车辆轮-轮与轮-轨接触关系的比较[J]. 铁道学报,1994(增刊1):17-23. YAN Junqi,WANG Kaiwen,FU Maohai. Comparison of wheel-wheel and wheel-rail contact relationship of locomotives[J]. Journal of the China Railway Society,1994(Suppl.1):17-23. [21] 施高义. 摩擦磨损原理[M]. 杭州:浙江大学出版社,1988. SHI Gaoyi. Principle of friction and wear[M]. Hangzhou: Zhejiang University Press,1988.