Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (2): 281-290.doi: 10.3901/JME.2023.02.281
Previous Articles Next Articles
XIAO Yuan1, HU Bin1, SHEN Gongtian1, CHEN Tao2, LIU Shujuan3, ZHANG Yong1, CHEN Weiwei1
Received:
2022-02-13
Revised:
2022-08-20
Published:
2023-03-30
CLC Number:
XIAO Yuan, HU Bin, SHEN Gongtian, CHEN Tao, LIU Shujuan, ZHANG Yong, CHEN Weiwei. Research on the Passenger Acceleration Influence Analysis on Safety and Comfort and Its Design Method of Amusement Rides[J]. Journal of Mechanical Engineering, 2023, 59(2): 281-290.
[1] FREEMAN M D, CROFT A C, NICODEMUS C N, et al. Significant spinal injury resulting from low-level accelerations:a case series of roller coaster in-juries[J]. Archives of Physical Medicine and Rehabilitation, 2005, 86(11):2126-2130. [2] ARAT Y O, VOLPI J, ARAT A, et al. Bilateral internal carotid artery and vertebral artery dissections with retinal artery occlusion after a roller coaster ride-case report and a review[J]. Ulus Travma Acil Cerrahi Derg, 2011, 17(1):75-78. [3] KUSCHYK J, BORGGREFE M, WOLPERT C. Cardiovascular response to a modern roller coaster ride[J]. JAMA, 2007, 298(7):739-741. [4] MANOS D, HAMER O, MÜLLER N L. Pulmonary hemorrhage resulting from bungee jumping[J]. Journal of Thoracic Imaging, 2007, 22(4):358. [5] MICHAEL R A, JAMES C B, ANNETTE G B. US naval flight surgeon's manual[M]. Washington D.C.:U.S. Government Printing Office, 1991. [6] 白净. 血液循环系统仿真[M]. 长春:吉林科学技术出版社, 1995. BAI Jing. Simulation of blood circulation system[M]. Changchun:Jilin Science and Technology Press, 1995. [7] WOOD E H, HOFFMAN E A. The lungs, ‘Achilles Heal’, of air breathers in changing gravitational-inertial force environments[J]. Physiologist, 1984, 1(27):47-48. [8] BURTON R R, SMITH A H. Adaptation to acceleration environments[M]. New York:John Wiley & Sons, Inc., 1996. [9] HREBIEN L. Blood flow measurements under high-g conditions:Early prediction of gz tolerance[R]. NADC 1983-83115-60, 1983. [10] BURNS J W. Re-evaluation of a tilt-back seat as a means of increasing acceleration tolerance[J]. Aviation, Space, and Environmental Medicine, 1975, 46(1):55-63. [11] BURTON R R. Mathematical models for predicting G-level tolerances[J]. Aviation, Space, and Environmental Medicine, 2000, 71(5):506-513. [12] VOGE V M. Comparison of several G-tolerance measuring methods at various seatback angles[J]. Aviation, space, and environmental medicine, 1978, 49(2):377-383. [13] ZUIDEMA, GEORGE D. Gravitational stress in aerospace medicine[M]. London:Little, Brown., 1961. [14] WOOD E H. Some effects of the force environment on the heart, lungs and circulation[J]. Clinical & Investigative Medicine Médecine Clinique Et Experimentale, 1987, 10(5):401-427. [15] 张五星, 詹长录, 耿喜臣. 在加速度作用中的推拉效应[J]. 中华航空航天医学杂志, 1999, 10(1):54-57. ZHANG Wuxing, ZHAN Changlu, GENG Xichen. The push-pull effect during acceleration stress[J]. Chinese Journal of Aerospace Medicine, 1999, 10(1):54-57. [16] LEHR A K, PRIOR A R J, LANGEWOUTERS G, et al. Previous exposure to negative Gz reduces relaxed+ Gz tolerance[J]. Aviation, Space, and Environmental Medicine, 1992, 63(5):405-405. [17] PRIOR A R J. Negative to positive Gz acceleration transition[R]. AGARD, Current Concepts on G-Protection Research and Development 8 p(SEE N 95-3405012-54), 1995. [18] ZHANG W X, ZHAN C L, GENG X C, et al. Decreased+ gz tolerance following lower body positive pressure:Simulated push-pull effect[J]. Aviation, Space, and Environmental Medicine, 2001, 72(11):1045-1047. [19] MICHAUD V J, LYONS T J. The "push-pull effect" and G-induced loss of consciousness accidents in the US Air Force[J]. Aviation, space, and environmental medicine, 1998, 69(11):1104-1106. [20] BANKS R D, GRISSETT J D, SAUNDERS P L, et al. The effect of varying time at-Gz on subsequent +Gz physiological tolerance (push-pull effect)[J]. Aviation, Space and Environmental Medicine, 1995, 66(8):723-727. [21] CHEUNG B, BATEMAN W A. The G transition effect revisited-A broader flight safety threat than Push-Pull'[R]. DCIEM 1999-085, 1999. [22] ASTM F24.24 Standard practice for design of amusement rides and devices:ASTM F2291-2019[S]. New York:ASTM, 2021. [23] CEN/TC 152.Safety of amusement rides and amusement devices.EN13814-2019[S]. Brussels:CEN, 2018. [24] 国家市场监督管理总局, 中国国家标准化管理委员会.大型游乐设施安全规范:GB8408-2018[S]. 北京:中国标准出版社, 2018. State Administration for Market Supervision and Administration, China Standardization Administration. Large-scale amusement device safety code:GB8408-2018[S]. Beijing:China Standard Press, 2018. [25] 陆霞, 王璇, 颜桂定, 等. 高性能战斗机飞行员加速度耐力选拔方法和标准的探讨[J]. 中华航空医学杂志, 1995, 6(1):14-17. LU Xia, WANG Xuan, YAN Guiding, et al. Exploration of screening method and standard for +Gz tolerance of high performance fighter pilots[J]. Chinese Journal of Aerospace Medicine, 1995, 6(1):14-17. [26] 金朝, 耿喜臣, 陆霞, 等. 580例歼击机飞行员的基础+Gz耐力检查结果分析[J]. 中华航空航天医学杂志, 2006, 17(3):185-190. JIN Zhao, GENG Xichen, LU Xia, et al. Analysis of the relaxed +Gz tolerance records of 580 fighter pilots[J]. Chinese Journal of Aerospace Medicine, 2006, 17(3):185-190. [27] 耿喜臣, 颜桂定, 金朝. 航空加速度生理学的研究与应用[J]. 航空军医, 2004, 1(4):189-196. GENG Xichen, YAN Guiding, JIN Zhao. Research and application of aviation acceleration physiology[J]. Flight Surgeon, 2004, 1(4):189-196. [28] 中国人民解放军总后勤部. 飞行员持续性正加速度耐力的检查方法和评定:GJB 3293-1998[S]. 北京:中国人民解放军总后勤部, 1998. General Logistics Department of the Chinese People's Liberation Army. Assessment and teat methods of sustained positive acceleration tolerance for pilots:GJB 3293-1998[S]. Beijing:General Logistics Department of the Chinese People's Liberation Army., 1998. [29] TRIPATHY N K, TYAGI P K. Analysis of multi-axis acceleration profile in a Supermanoeuvrable aircraft[J]. Indian Journal of Aerospace Medicine, 2006, 50(2):7-12. [30] ALBERY W B. Acceleration in other axes affects+ Gz tolerance:Dynamic centrifuge simulation of agile flight[J]. Aviation, Space, and Environmental Medicine, 2004, 75(1):1-6. [31] 徐艳, 雍伟, 卫晓阳. ±Gx或±Gy与+Gz复合作用对人体抗荷耐力的影响[J]. 航天医学与医学工程, 2015, 28(5):336-340. XU Yan, YONG Wei, GENG Xichen.Effects of combining ±Gx or ±Gy with +Gz acceleration on anti-G tolerance[J]. Space Medicine & Medical Engineering, 2015, 28(5):336-340. [32] GREEN N D C. Acute soft tissue neck injury from unexpected acceleration[J]. Aviation, Space, and Environmental Medicine, 2003, 74(10):1085-1090. [33] LEWIS S. Human tolerance to abrupt deceleration[R]. Unpublished notes from the Crash Survival Investigator's School, 1974. [34] 张选斌, 唐勇, 岳洪梅. ±Gx加速度对航母舰载机飞行员的影响及防护对策[J]. 人民军医, 2013, 56(10):1124-1125. ZHANG Xuanbin, TANG Yong, YUE Hongmei. Influence of ±Gx acceleration on pilots of carrier-borne aircraft of aircraft carrier and protective measures[J]. People's Military Surgeon, 2013, 56(10):1124-1125. [35] 柳松杨, 丛红, 王鹤, 等. 军机飞行员的颈部损伤研究[J]. 医用生物力学, 2010, 25(4):262-265. LIU Songyang, CONG Hong, WANG He, et al. Study on neck injuries in military pilots[J]. Journal of Medical Biomechanics, 2010, 25(4):262-265. [36] 包佳仪, 王兴伟, 周前祥, 等. 阻拦着舰过程中飞行员颈部的损伤分析与预测[J]. 北京航空航天大学学报, 2019, 45(3):499-507. BAO Jayi, WANG Xingwei, ZHOU Qianxiang, et al. Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):499-507. [37] 徐立. 高性能飞机飞行员非冲击性颈部损伤的研究进展[J]. 中华航空医学杂志, 1996, 7(2):120-122. XU Li. Non-impact cervical injuries in pilots of high performance aircraft[J]. Chinese Journal of Aerospace Medicine, 1996, 7(2):120-122. [38] PANJABI M M, ITO S, IVANCIC P C, et al. Evaluation of the intervertebral neck injury criterion using simulated rear impacts[J]. Journal of Biomechanics, 2005, 38(8):1694-1701. [39] COAKWELL M R, BLOSWICK D S, MOSER R. High-risk head and neck movements at high G and interventions to reduce associated neck injury[J]. Aviation, Space, and Environmental Medicine, 2004, 75(1):68-80. [40] VAN DIJKE G A H, SNIJDERS C J, ROOSCH E R, et al. Analysis of biomechanical and ergonomic aspects of the cervical spine in F-16 flight situations[J]. Journal of Biomechanics, 1993, 26(9):1017-1025. [41] NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function-the maximum power index[R]. SAE Technical Paper, 2000. [42] ZHANG L L, WANG J Q, QI R R, et al. Motion sickness:current knowledge and recent advance[J]. CNS Neuroscience & Therapeutics, 2016, 22(1):5-24. [43] GOLDING J F. Motion sickness susceptibility[J]. Autonomic Neuroscience, 2006, 129(1-2):67-76. [44] GOLDING J F. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness[J]. Brain Research Bulletin, 1998, 47(5):507-516. [45] 乐燕, 潘竹林, 包瀛春. 心理因素与Coriolis转椅诱发晕动反应的关系[J]. 第二军医大学学报, 2011, 32(9):1042-1043. LE Yan, PAN Zhulin, BAO Yingchun. Relationship of psychological factors with motorized Coriolis rotating chair-induced motion sickness[J]. Academic Journal of Second Military Medical University, 2011, 32(9):1042-1043. [46] 潘磊磊, 祁瑞瑞, 王俊骎, 等. 晕动病前庭生理机制研究进展[J]. 第二军医大学学报, 2016, 37(8):1012-1018. PAN Leilei, QI Ruirui, WANG Junqin, et al. Research progress in vestibular physiological mechanism of motion sickness[J]. Academic Journal of Second Military Medical University, 2016, 37(8):1012-1018. [47] 刘正, 于立身, 王奎年, 等. 阶梯式累加Coriolis加速度刺激法对晕机病易感性的预测[J]. 中华航空航天医学杂志, 1998, 9(2):97-101. LIU Zheng, YU Lishen, WANG Kuinian, et al. Using step up cumulative Coriolis acceleration as a method for predicting air sickness susceptibility[J]. Chinese Journal of Aerospace Medicine, 1998, 9(2):97-101. [48] 谢溯江, 于立身, 贾宏博, 等. 不同强度的科里奥利加速度刺激对人体主观感觉及眼震的影响[J]. 中华航空航天医学杂志, 2001, 12(2):77-80. XIE Sujiang, YU Lishen, JIA Hongbo, et al. The influence of Coriolis acceleration magnitude on human oculomotor and perceptual responses[J]. Chinese Journal of Aerospace Medicine, 2001, 12(2):77-80. [49] 包德海, 曹祚焕, 况友富, 等. 舰艇人员晕船敏感性检查方法研究[C]//中国生理学会第六届应用生理学委员会全国学术会议论文摘要汇编, 2003. BAO Dehai, CAO Zuohuan, KUANG Youfu, et al. A study on sensitivity test of seasickness for ship personnel[C]//Proceedings of the 6th National Conference of Applied Physiology Committee of Chinese Physiological Society, 2003. [50] CLEON L M, LAURIKS G. Evaluation of passenger comfort in railway vehicles[J]. Journal of Low Frequency Noise, Vibration and Active Control, 1996, 15(2):53-69. [51] 国家市场监督管理总局, 中国国家标准化管理委员会. 机械振动与冲击人体暴露于全身振动的评价第1部分一般要求:GB/T 13441.1-2007[S]. 北京:中国标准出版社, 2007. State Administration for Market Supervision and Administration, China Standardization Administration. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1:General requirements:GB/T 13441.1-2007[S]. Beijing:China Standard Press, 2007. [52] 国家市场监督管理总局, 中国国家标准化管理委员会. 机械振动与冲击人体暴露于全身振动的评价第5部分包含多次冲击的振动的评价方法:GB/T 13441.5-2015[S]. 北京:中国标准出版社, 2015. State Administration for Market Supervision and Administration, China Standardization Administration. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 5:Method for evaluation of vibration containing multiple shocks:GB/T 13441.5-2015[S]. Beijing:China Standard Press, 2015. [53] LEATHERWOOD J D, DEMPSEY T K, CLEVENSON S A. A design tool for estimating passenger ride discomfort within complex ride environments[J]. Human Factors, 1980, 22(3):291-312. [54] PARK M S, FUKUDA T, KIM T G, et al. Health risk evaluation of whole-body vibration by iso 2631-5 and iso 2631-1 for operators of agricultural tractors and recreational vehicles[J]. Industrial Health, 2013, 51(3):364-370. [55] ALEM N. Application of the new ISO 2631-5 to health hazard assessment of repeated shocks in US army vehicles[J]. Industrial Health, 2005, 43(3):403-412. [56] 刘国强, 董明明, 秦浩. 直升机振动和噪声联合环境对人体的影响[J]. 航空科学技术, 2016, 27(11):30-33. LIU Guoqiang, DONG Mingming, QIN Hao. The effects of helicopter noise and vibration joint environment on the human body[J]. Aeronautical Science & Technology, 2016, 27(11):30-33. [57] LEATHERWOOD J D, CLEVENSON S A, HOLLENBAUGH D D. Evaluation of ride quality prediction methods for helicopter interior noise and vibration environments[R]. NTRS 1984-001-2087, 1984. [58] HAMMOND C E, HOLLENBAUGH D D, CLEVENSON S A, et al. An evaluation of helicopter noise and vibration ride qualities criteria[R]. VA:NASA, 1981. [59] HOLLENBAUGH D D. Quantification of helicopter vibration ride quality using absorbed power measurements[R]. Army Research and Technology Labs Fort Eustis va Applied Technology Lab, 1982. [60] 宗长富, 陈双, 冯刚, 等. 基于频率加权滤波的汽车平顺性评价[J]. 吉林大学学报, 2011, 41(6):517-521. ZONG Changfu, CHEN Shuang, FENG Gang, at al. Evaluation of vehicle ride comfort based on frequency weighted filtering[J]. Journal of Jilin University, 2011, 41(6):517-521. |
[1] | TAO Liang, TANG Yu, LI Yuanqiang, ZHANG Dashan, ZHANG Xiaolong. Design of Intelligent Tire Development Platform with Multiple In-tire Sensors and Research on Tire Cornering Test [J]. Journal of Mechanical Engineering, 2024, 60(8): 245-255. |
[2] | HUANG Gongrui, ZHU Yangli, XIONG Jun, WANG Xing, LI Wen, CHEN Haisheng. Review on the Axial Turbine Long-blade Stage Characteristics under Off-design Conditions [J]. Journal of Mechanical Engineering, 2024, 60(8): 271-290. |
[3] | REN Shan, WANG Jin, ZHAO Xin, ZHANG Yingfeng. “Doubly-fed” Manufacturing Service of Intelligent Design and Preventive Maintenance for Complex Products [J]. Journal of Mechanical Engineering, 2024, 60(6): 127-136. |
[4] | ZHANG Fengli, ZHANG Rongrong, LUO Qiuli, ZHANG Yadong, LI Bing, GUO Hui. Research on the Aerodynamic Noise Mechanism and Noise Reduction of SUV Roof Hollow Spoiler [J]. Journal of Mechanical Engineering, 2024, 60(6): 398-408. |
[5] | ZHANG Liyuan, YANG Jinbo, LI Ao, YANG Qingkai, XU Guangkui. Review on Configuration Design and Control of Tensegrity Spherical Robots [J]. Journal of Mechanical Engineering, 2024, 60(5): 1-18. |
[6] | ZHAO Ping, ZHANG Yating, CHENG Yue, XU Hongwei, ZI Bin. Multi-task Trajectory Synthesis Method of Single-DOF Stephenson Mechanisms Based on Sensitivity Analysis [J]. Journal of Mechanical Engineering, 2024, 60(5): 59-69. |
[7] | MENG Yuan, SHI Baojun, ZHANG Dequan. Research and Improvement of Kriging-HDMR Modeling Method [J]. Journal of Mechanical Engineering, 2024, 60(5): 249-263. |
[8] | ZHU Shangshang, YU Huiling, DONG Yenan, LUO Shijian. A Product Creative Design Method That Incorporates the Creation of Consumer Groups [J]. Journal of Mechanical Engineering, 2024, 60(5): 276-287. |
[9] | GAO Qiang, WANG Jian, ZHANG Yan, ZHENG Xuyang, LÜ Hao, YIN Guodong. Topology Optimization Approaches and Its Application and Prospect in Transportation Engineering [J]. Journal of Mechanical Engineering, 2024, 60(4): 369-390. |
[10] | ZONG Huaizhi, AI Jikun, ZHANG Junhui, JIANG Lei, TAN Shujie, LIU Yuxian, SU Qi, XU Bing. Lightweight Design of Limb Leg Units for Hydraulic Quadruped Robots by Topology Optimization and Lattice Filling [J]. Journal of Mechanical Engineering, 2024, 60(4): 420-429. |
[11] | DING Ruqi, XIONG Wenjie, CHENG Min, XU Bing. Safety Performance Evaluation of the Intelligent Independent-metering Electro-hydraulic Control System [J]. Journal of Mechanical Engineering, 2024, 60(4): 101-112. |
[12] | XIE Chao, ZHANG Enjie, YAN Biao, GAO Feng, YANG Jinping, FANG Guangqiang, WANG Zhiyi. Configuration Design and Demonstration of a Spaceborne Deployable Membrane Array Antenna [J]. Journal of Mechanical Engineering, 2024, 60(3): 11-27. |
[13] | LIU Xiaofei, WAN Bo, WANG Yu, LI Mingyu, ZHAO Yongsheng. Design, Analysis and Performance Optimization of a Novel Super-redundantly Actuated Hybrid Robot [J]. Journal of Mechanical Engineering, 2024, 60(3): 55-67. |
[14] | DU Yanbin, WANG Aoting, HE Kun. Tooth Contact Analysis of Helical Gears with Longitudinal Modification Considering Twist Errors [J]. Journal of Mechanical Engineering, 2024, 60(3): 143-154. |
[15] | LÜ Liye, LU Yujun, WANG Shuo, LIU Yin, LI Kunpeng, SONG Xueguan. Survey and Prospect of Surrogate Model Technique and Application [J]. Journal of Mechanical Engineering, 2024, 60(3): 254-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||