Journal of Mechanical Engineering ›› 2020, Vol. 56 ›› Issue (13): 165-178.doi: 10.3901/JME.2020.13.165
Previous Articles Next Articles
LI Yunhua1, FAN Rujun1, YANG Liman1, ZHAO Bin2, QUAN Long2
Received:
2019-06-03
Revised:
2019-12-03
Online:
2020-07-05
Published:
2020-08-01
CLC Number:
LI Yunhua, FAN Rujun, YANG Liman, ZHAO Bin, QUAN Long. Research Status and Development Trend of Intelligent Excavators[J]. Journal of Mechanical Engineering, 2020, 56(13): 165-178.
[1] 葛磊,董致新,李运华,等. 系列化液压挖掘机数字样机研究[J]. 机械工程学报,2019,55(14):186-196. GE Lei,DONG Zhixin,LI Yunhua,et al. Research on digital prototypes of serial hydraulic excavators[J]. Journal of Mechanical Engineering,2019,55(14):186-196. [2] YUSOF A A,SAADUN M N A,SULAIMAN H,et al. The development of tele-operated electro-hydraulic actuator (T-EHA) for mini excavator tele-operation[M]. New York:IEEE,2016. [3] LEE S U,CHANG P H. Control of a heavy-duty robotic excavator using time delay control with integral sliding surface[J]. Control Engineering Practice,2002,10(7):697-711. [4] PAPADOPOULOS E,MU B,FRENETTE R. On modeling,identification,and control of a heavy-duty electrohydraulic harvester manipulator[J]. IEEE-ASME Transactions on Mechatronics,2003,8(2):178-187. [5] 李泽鹏,权龙,葛磊,等. 液电混合驱动液压挖掘机动臂特性及能效研究[J]. 机械工程学报,2018,54(20):213-219. LI Zepeng,QUAN Long,GE Lei,et al. Research on characteristics and energy efficiency of hydraulic-electric combined driving hydraulic excavator boom[J]. Journal of Mechanical Engineering,2018,54(20):213-219. [6] GE L,QUAN L,LI Y W,et al. A novel hydraulic excavator boom driving system with high efficiency and potential energy regeneration capability[J]. Energy Conver-sion and Management,2018,166:308-317. [7] LIN T,WANG Q. Hydraulic accumulator-motor-generator energy regeneration system for a hybrid hydraulic excavator[J]. Chinese Journal of Mechanical Engineering,2012,25(6):1121-1129. [8] 杨华勇. 工程机械智能化进展与发展趋势[J]. 建设机械技术与管理,2017,30(12):19-21. YANG Huayong. Progress and trend of construction ma-chinery intelligence[J]. Construction Machinery Technology and Management,2017,30(12):19-21. [9] CANNON H N. Extended earthmoving with an autono-mous excavator[D]. Pittsburgh:Carnegie Mellon University,1999. [10] GU J,TAYLOR C J,SEWARD D W. Proportional-Integral-Plus control strategy of an intelligent excavator[J]. Computer-Aided Civil and Infrastructure Engineering,2004,19(1):16-27. [11] 赵鑫. 智能挖掘机轨迹控制研究[D]. 长沙:中南大学,2012. ZHAO Xin. Trajectory control of the new intelligent excavator[D]. Changsha:Central South University,2012. [12] 李勇. 自动作业液压挖掘机的铲斗轨迹控制和回转力矩控制研究[D]. 杭州:浙江大学,2019. LI Yong. Study on bucket trajectory and swing torque control for the autonomous hydraulic excavator[D]. Hangzhou:Zhejiang University,2019. [13] TIAN T,SUN S,LI N. Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises[J]. Information Fusion,2016,27:126-137. [14] RUSSELL S J,NORVIG P. Artificial intelligence:A modern approach[M]. Malaysia:Pearson Education Limited,2016. [15] SEO Y,SHIN K S. Hierarchical convolutional neural networks for fashion image classification[J]. Expert Systems with Applications,2019,116:328-339. [16] DUA M,AGGARWAL R K,BISWAS M. Discri-minatively trained continuous Hindi speech recognition system using interpolated recurrent neural network language modeling[J]. Neural Computing and Applications,2019,31(10):6747-6755. [17] LI B T,PI D C. Learning deep neural networks for node classification[J]. Expert Systems with Applications,2019,137:324-334. [18] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [19] KIM K W,KIM H S,CHOI Y K,et al. Optimization of cubic polynomial joint trajectories and sliding mode controllers for robots using evolution strategy[C]//Proceedings of the 23rd International Conference on Industrial Electronics,Control,and Instrumentation. Piscataway:IEEE,1997,1444-1447. [20] ANGELES J,ALIVIZATOS A,ZSOMBOR-MURRAY P J. The synthesis of smooth trajectories for pick- and-place operations[J]. IEEE Transactions on Systems,Man,and Cybernetics,1988,18(1):173-178. [21] SINGH S,CANNON H. Multi-resolution planning for earthmoving[C]//1998 IEEE International Conference on Robotics and Automation. Piscataway:IEEE,1998,121-126. [22] 朱世强,刘松国,王宣银,等. 机械手时间最优脉动连续轨迹规划算法[J]. 机械工程学报,2010,46(3):47-52. ZHU Shiqiang,LIU Songguo,WANG Xuanyin,et al. Time-optimal and jerk-continuous trajectory planning algorithm for manipulators[J]. Journal of Mechanical Engineering,2010,46(3):47-52. [23] ZHANG B,WANG S,LIU Y,et al. Research on trajectory planning and autodig of hydraulic excavator[J]. Mathematical Problems in Engineering,2017,2017:1-10. [24] 翁文文,殷晨波,冯浩,等. 挖掘机器人自主挖掘轨迹规划方法[J]. 机械设计与研究,2018,34(2):5-9. WENG Wenwen,YIN Chenbo,FENG Hao,et al. Autonomous mining trajectory planning method for mining robot[J]. Machine Design and Research,2018,34(2):5-9. [25] NAGY A,VAJK I. Nonconvex time-optimal trajectory planning for robot manipulators[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,2019,141(11):111007. [26] 孙志毅,张韵悦,李虹,等. 挖掘机的最优时间轨迹规划[J]. 机械工程学报,2019,55(5):166-174. SUN Zhiyi,ZHANG Yunyue,LI Hong,et al. Time optimal trajectory planning of excavator[J]. Journal of Mechanical Engineering,2019,55(5):166-174. [27] YOO S,PARK C,YOU S,et al. A dynamics-based optimal trajectory generation for controlling an automated excavator[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2010,224(10):2109-2119. [28] STAVROPOULOU M,XIROUDAKIS G,EXADAKTYLOS G. Analytical model for estimation of digging forces and specific energy of cable shovel[J]. Coupled Systems Mechanics,2013,2(1):23-51. [29] WANG X B,SUN W,LI E Y,et al. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning[J]. Structural and Multidisciplinary Optimization,2018,58(5):2219-2237. [30] KIM Y B,HA J,KANG H,et al. Dynamically optimal trajectories for earthmoving excavators[J]. Automation in Construction,2013,35:568-578. [31] ZOU Z,CHEN J,PANG X. Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil-bucket interaction[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2019,233(3):598-616. [32] GAO Y J,JIN Y C,ZHANG Q. Motion planning based coordinated control for hydraulic excavators[J]. Chinese Journal of Mechanical Engineering,2009,22(1):97-101. [33] ZWEIRI Y H,SENEVIRATNE L D,ALTHOEFER K. Modelling and control of an unmanned excavator vehicle[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2003,217(I4):259-274. [34] FENG H,YIN C B,WENG W W,et al. Robotic excavator trajectory control using an improved GA based PID controller[J]. Mechanical Systems and Signal Processing,2018,105:153-168. [35] HA Q P,NGUYEN Q H,RYE D C,et al. Fuzzy sliding-mode controllers with applications[J]. IEEE Transactions on Industrial Electronics,2001,48(1):38-46. [36] 张金萍,刘阔,林剑峰,等. 挖掘机的4自由度自适应模糊滑模控制[J]. 机械工程学报,2010,46(21):87-92. ZHANG,Jinping,LIU Kuo,LIN Jianfeng,et al. 4-DOF adaptive fuzzy sliding mode control of excavator[J]. Journal of Mechanical Engineering,2010,46(21):87-92. [37] BU F,YAO B. Observer based coordinated adaptive robust control of robot manipulators driven by single-rod hydraulic actuators[C]//Proceedings of the IEEE Interna-tional Conference on Robotics and Automation. Piscataway:IEEE,2000:3034-3039. [38] HE Q H,ZHANG D Q,HAO P,et al. Modeling and control of hydraulic excavator's arm[J]. Journal of Central South University,2006,13(4):422-427. [39] CHANG P H,LEE S J. A straight-line motion tracking control of hydraulic excavator system[J]. Mechatronics,2002,12(1):119-138. [40] KIM J,JIN M,CHOI W,et al. Discrete time delay control for hydraulic excavator motion control with terminal sliding mode control[J]. Mechatronics,2019,60:15-25. [41] PARK J,CHO D,KIM S,et al. Utilizing online learning based on echo-state networks for the control of a hydraulic excavator[J]. Mechatronics,2014,24(8):986-1000. [42] LE H D,AHN K K,KHA N B,et al. Trajectory control of electro-hydraulic excavator using fuzzy self tuning algorithm with neural network[J]. Journal of Mechanical Science and Technology,2009,23(1):149-160. [43] CAI G,TONG Z,XING Z. Modelling of electro-hydraulic system using RBF neural networks and genetic algorithm[J]. ACM Transactions on Graphics,2010,29(4):1-12. [44] KIM S,PARK J,KANG S,et al. A robust control approach for hydraulic excavators using μ-synthesis[J]. International Journal of Control,Automation and Systems,2018,16(4):1615-1628. [45] RAIBERT M H,CRAIG J J. Hybrid position/force control of manipuIators[J]. Journal of Dynamic Systems,Measurement and Control,1981,103(2):126-133. [46] VÄHÄ P K,SKIBNIEWSKI M J. Cognitive force control of excavators[J]. Journal of Aerospace Engineering,1993,6(2):159-166. [47] NGUYEN Q H,HA Q P,RYE D C,et al. Force/position tracking for electrohydraulic systems of a robotic excavator[C]//Proceedings of the 39th IEEE Conference on Decision and Control. Piscataway:IEEE Computer Society,2000:5224-5229. [48] PARK H,LEE S,CHU B,et al. Obstacle avoidance for robotic excavators using a recurrent neural network[C]//2008 International Conference on Smart Manufacturing Application. Piscataway:IEEE,2008:583-588. [49] KIM S K,SEO J,RUSSELL J S. Intelligent navigation strategies for an automated earthwork system[J]. Automation in Construction,2012,21:132-147. [50] 朱建新,罗刚,汪志杰,等. 基于激光雷达的挖掘机器人回转避障研究[J]. 传感器与微系统,2017,36(9):41-44. ZHU Jianxin,LUO Gang,WANG Zhijie,et al. Study on obstacle avoidance of excavator robot rotating based on laser radar[J]. Transducer and Microsystem Technologies,2017,36(9):41-44. [51] QUANG H A,SANTOS,MIGUEL,et al. Robotic excavation in construction automation[J]. IEEE Robotics and Automation Magazine,2002,9(1):20-28. [52] SEO J,LEE S,KIM J,et al. Task planner design for an automated excavation system[J]. Automation in Construction,2011,20(7):954-966. [53] YAMAMOTO H,MOTEKI M,SHAO H,et al. Development of the autonomous hydraulic excavator prototype using 3D information for motion planning and control[J]. Transactions of the Society of Instrument and Control Engineers,2012,48(8):488-497. [54] GU J,MA X D,NI J F,et al. Linear and nonlinear control of a robotic excavator[J]. Journal of Central South University,2012,19(7):1823-1831. [55] 牛大伟. 基于MEMS传感器的挖掘机姿态检测系统的研究[D]. 泉州:华侨大学,2015. NIU Dawei. The research of the excavator attitude detection system based on MEMS sensor[D]. Quanzhou:Huaqiao University,2015. [56] YUAN C X,LI S,CAI H B. Vision-based excavator detection and tracking using hybrid kinematic shapes and key nodes[J]. Journal of Computing in Civil Engineering,2017,31(1):04016038. [57] XU J,YOON H S. Vision-based estimation of excavator manipulator pose for automated grading control[J]. Automation in Construction,2019,98:122-131. [58] LIANG C J,LUNDEEN K M,MCGEE W,et al. A vision-based marker-less pose estimation system for articulated construction robots[J]. Automation in Construction,2019,104:80-94. [59] 王海波,邹海龙,张如照. 基于视觉测量的挖掘机工作装置姿态测量系统[J]. 农业机械学报,2015,46(4):302-308. WANG Haibo,ZOU Hailong,ZHANG Ruzhao. Attitude measurement system for excavator's manipulator based on vision measurement[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):302-308. [60] 朱建新,沈东羽,吴钪. 基于激光点云的智能挖掘机目标识别[J]. 计算机工程,2017,43(1):297-302. ZHU Jianxin,SHEN Dongyu,WU Kang. Target recognition for intelligent excavator based on laser point cloud[J]. Computer Engineering,2017,43(1):297-302. [61] YOO H S,KIM Y S. Development of a 3D local terrain modeling system of intelligent excavation robot[J]. KSCE Journal of Civil Engineering,2016,21(3):565-578. [62] CHAE M,KIM J,JANG J,et al. 3D imaging system for the intelligent excavation system(IES)[C]//25th International Symposium on Automation and Robotics in Construction. Vilnius:Vilnius Gediminas Technical Univ Press,2008,286-291. [63] CHAE M J,LEE G W,KIM J Y,et al. A 3D surface modeling system for intelligent excavation system[J]. Automation in Construction,2011,20(7):808-817. [64] KOMATSU. 现况高精度测量[EB/OL].[2019-07-08]. http://smartconstruction.komatsu/introduction/index.html. KOMATSU. High-precision measurement of site conditions[EB/OL].[2019-07-08]. http://smartConstruction.komatsu/introduction/index.html. [65] 三一集团. 三一、华为巨头联手,全球首台5G遥控挖掘机投入实用[EB/OL].[2019-07-05]. https://www.sanygroup.com/xwzx/6993.html. SANY GROUP. Sany cooperates with Huawei to put the world's first 5G remote control excavator intopractice[EB/OL].[2019-07-05]. https://www.sanygroup.com/xwzx/6993.html. [66] LE Q H,LEE J W,YANG S Y. Remote control of excavator using head tracking and flexible monitoring method[J]. Automation in Construction,2017,81:99-111. [67] KIM D,KIM J,LEE K,et al. Excavator tele-operation system using a human arm[J]. Automation in Construction,2009,18(2):173-182. [68] KIM D,OH K W,LEE C S,et al. Novel design of haptic devices for bilateral teleoperated excavators using the wave-variable method[J]. International Journal of Precision Engineering and Manufacturing,2013,14(2):223-230. [69] NG F,HARDING J A,GLASS J. Improving hydraulic excavator performance through in line hydraulic oilconta-mination monitoring[J]. Mechanical Systems and Signal Processing,2017,83:176-193. [70] LEE Y B. A study of the life test of hydraulic pump driving gear box for the large excavator[J]. Journal of the Korean Society of Marine Engineering,2015,39(3):211-216. [71] 冯萧. 基于WiFi和虚拟仪器的工程机械参数监测及故障诊断系统研究与开发[D]. 石家庄:石家庄铁道大学,2018. FENG Xiao. Study of system of engineering machinery's parameters on-line monitoring and fault-diagnosing based on technology of WIFI and virtual instruments[D]. Shijiazhuang:Shijiazhuang Tiedao University,2018. [72] LI H,TIAN Z,YU H,et al. Fault prognosis of hydraulic pump based on bispectrum entropy and deep belief network[J]. Measurement Science Review,2019,19(5):195-203. [73] HE X Y,HE Q H,XIE X H,et al. Fault diagnosis of excavator hydraulic system based on partial least squares regression[J]. Journal of Central South University,2007,38(6):1152-1156. [74] HE X,HE Q. Application of PCA method and FCM clustering to the fault diagnosis of excavator's hydraulic system[C]//2007 IEEE International Conference on Automation and Lofistics. Piscataway:IEEE,2007,1635-1639. [75] HE Q H,HE X Y,ZHU J X. Fault detection of excavator's hydraulic system based on dynamic principal component analysis[J]. Journal of Central South University,2008,15(5):700-705. [76] SHAO H,JIANG H,ZHAO H,et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems,2016,119:200-220. [77] GUO X,CHEN L,SHEN C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement,2016,93:490-502. [78] JING L,WANG T,ZHAO M,et al. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox[J]. Sensors,2017,17(2):414. |
[1] | DI Zijun, YUAN Dongfeng, LI Dongyang, LIANG Daojun, ZHOU Xiaotian, XIN Miaomiao, CAO Feng, LEI Tengfei. Tool Fault Diagnosis Method Based on Multiscale-efficient Channel Attention Network [J]. Journal of Mechanical Engineering, 2024, 60(6): 82-90. |
[2] | YAN Ruqiang, XU Wengang, WANG Zhiying, ZHU Qixiang, ZHOU Zheng, ZHAO Zhibin, SUN Chuang, WANG Shibin, CHEN Xuefeng, ZHANG Junhui, XU Bing. Research Status and Challenges on Fault Diagnosis Methodology for Fuel Control System of Aero-engine [J]. Journal of Mechanical Engineering, 2024, 60(4): 3-31. |
[3] | ZHANG Junhui, LIU Shihao, XU Bing, HUANG Weidi, LÜ Fei, HUANG Xiaochen. Research Status and Development Trends on Intelligent Key Technology of the Axial Piston Pump [J]. Journal of Mechanical Engineering, 2024, 60(4): 32-49. |
[4] | DING Ruqi, XIONG Wenjie, CHENG Min, XU Bing. Safety Performance Evaluation of the Intelligent Independent-metering Electro-hydraulic Control System [J]. Journal of Mechanical Engineering, 2024, 60(4): 101-112. |
[5] | WANG Zhiying, LI Tianfu, XU Wengang, SUN Chuang, ZHANG Junhui, XU Bing, YAN Ruqiang. Denoising Mixed Attention Variational Auto-encoder for Axial Piston Pump Fault Diagnosis [J]. Journal of Mechanical Engineering, 2024, 60(4): 167-177. |
[6] | SHAO Haidong, LIN Jian, MIN Zhishan, MING Yuhang. Improved Semi-supervised Prototype Network for Cross-domain Fault Diagnosis of Gearbox under Out-of-distribution Interference Samples [J]. Journal of Mechanical Engineering, 2024, 60(4): 212-221. |
[7] | PAN Haiyang, XU Haifeng, ZHENG Jinde, TONG Jinyu, ZHANG Feibin. Mechanical Fault Diagnosis Method Based on Twin Weighted Imbalanced Matrix Classifier [J]. Journal of Mechanical Engineering, 2024, 60(3): 170-180. |
[8] | ZHAO Ke, YE Min, WANG Ruixin, LU Hai, LIU Mengmeng, SHAO Haidong. Fuzzy Domain Adaptation Approach for Source-free Domain Rotary Machinery Fault Diagnosis [J]. Journal of Mechanical Engineering, 2024, 60(18): 43-52. |
[9] | LI Zhipeng, MA Tianyu, LIU Jinping, XIANG Qingsong, TANG Junjie. Multi-source Domain Adaptation Intelligent Fault Diagnosis Method Based on Asymmetric Adversarial Training [J]. Journal of Mechanical Engineering, 2024, 60(18): 76-88. |
[10] | WANG Yukun, YI Cai, WANG Hao, ZHOU Qiuyang, RAN Le, WANG Jingyuan. Adaptive Frequency Band Division Method Guided by PSD and Its Application in Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2024, 60(17): 179-193. |
[11] | LIU Yilong, LI Xinyuan, CHEN Yinping, CHENG Wei, CHEN Xuefeng. A Motor Bearing Cage Fault Diagnosis Method Based on Local Maximum of Kurtosis Surface [J]. Journal of Mechanical Engineering, 2024, 60(15): 89-99. |
[12] | YU Xiaoluo, YANG Yang, DU Minggang, HE Qingbo, PENG Zhike. Cooperative Detection and Decomposition Approach of Deviation-included Frequency Components for Mechanical Transmission Systems [J]. Journal of Mechanical Engineering, 2024, 60(15): 100-112. |
[13] | HUANG Baoyu, ZHANG Yongxiang. Rolling Element Bearing Fault Diagnosis Using a Three-step Scheme [J]. Journal of Mechanical Engineering, 2024, 60(14): 51-68. |
[14] | CHEN Qian, CHEN Kangkang, DONG Xingjian, HUANGFU Yifan, PENG Zhike, MENG Guang. Interpretable Convolutional Neural Network for Mechanical Equipment Fault Diagnosis [J]. Journal of Mechanical Engineering, 2024, 60(12): 65-76. |
[15] | WANG Shibin, WANG Shiao, CHEN Xuefeng, HUANG Hai, AN Botao, ZHAO Zhibin, LIU Yongquan, LI Yinghong. Interpretable Network Construction for Intelligent Monitoring and Diagnosis,and Application in Inter-shaft Bearing Diagnosis While Aero-engine Test [J]. Journal of Mechanical Engineering, 2024, 60(12): 90-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||