• CN:11-2187/TH
  • ISSN:0577-6686

›› 2005, Vol. 41 ›› Issue (7): 192-197.

• 论文 • 上一篇    下一篇

扫码分享

基于时间窗的锌钡白转窑煅烧过程在线优化建模

朱燕飞;伍建平;李琦;毛宗源   

  1. 华南理工大学自动化科学与工程学院
  • 发布日期:2005-07-15

ONLINE OPTIMAL MODELING BASED ON TIME WINDOW FOR CALCULATION PROCESS IN ROTARY KILN

Zhu Yanfei;Wu Jianping;Li Qi;Mao Zongyuan   

  1. College of Automation Science and Engineering, South China University of Technology
  • Published:2005-07-15

摘要: 应用混合核函数的最小二乘支持矢量机(LS-SVM)解决锌钡白转窑煅烧过程的多变量模型拟合问题,模型拟合精度高,效果好。为使系统实现模型参数的在线修正运算,扩展了LS-SVM,提出了一种基于KKT判定条件的时间窗在线建模算法。这一算法在时间窗向前移动的同时,依靠KKT判定条件,确定是否需要对新增的样本数据进行重新训练,避免不必要的重复运算。随着时间窗向前移动,系统不断更新模型参数,以适应工况变化的需要。仿真分析说明,这种建模方法在此类煅烧过程控制和产品质量提高上有着广阔的应用前景。

关键词: 核函数, 时间窗, 在线建模, 最小二乘支持矢量机

Abstract: Least squares support vector machines (LS-SVM) is a perfect model-learning algorithm with good accuracy and high speed. In order to solve the online multivariable-modeling problem of a Lithopone calcination process in rotary kiln, a new kind of online modeling algorithm based on time window in LS-SVM is proposed. The purpose is to show its powerful identification performances. First, the main mechanism of LS-SVM is presented, and then the optimization algorithm of the time window is discussed. The current feature of the model has strong relationship with L updated data. Karush-Kuhn- Tucker (KKT) optimization condition decides whether to do the retraining at each updating procedure and avoids unnecessary recalculations. Finally, the simulation results are presented. The good performance of this algorithm shows its broad prospect on dynamic identifications of complex nonlinear processes.

Key words: Kernels, Least squares support vector machines(LS-SVM), Online modeling, Time window

中图分类号: