机械工程学报 ›› 2019, Vol. 55 ›› Issue (3): 181-190.doi: 10.3901/JME.2019.03.181
李琛, 张飞虎, 张宣, 饶小双
收稿日期:
2018-03-15
修回日期:
2018-08-15
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
张飞虎(通信作者),男,1964年出生,博士,教授,博士研究生导师。主要研究方向为精密超精密加工与纳米制造技术。E-mail:zhangfh@hit.edu.cn
作者简介:
李琛,男,1992年出生,博士研究生。主要研究方向为精密超精密加工与纳米制造技术。E-mail:hit_chenli@163.com
基金资助:
LI Chen, ZHANG Feihu, ZHANG Xuan, RAO Xiaoshuang
Received:
2018-03-15
Revised:
2018-08-15
Online:
2019-02-05
Published:
2019-02-05
摘要: 硬脆单晶材料具有高硬度、低密度、低热膨胀系数、化学稳定性好等特点,近年来在光学、航空航天、电子、固体激光器等领域应用广泛。这类材料由于高硬度、低断裂韧性等特点,加工过程容易产生脆性断裂,属于典型的难加工材料。硬脆单晶材料的塑性域加工技术成为超精密加工领域研究的热点问题,然而目前对硬脆单晶材料塑性域去除机理的研究尚处于探索阶段。介绍了硬脆单晶材料塑性域加工的概念,综述了硬脆单晶材料的塑性域去除机理,指出了目前硬脆单晶材料在塑性域去除机理研究方面存在的问题,并对硬脆单晶材料塑性域去除机理的未来研究方向进行了展望。
中图分类号:
李琛, 张飞虎, 张宣, 饶小双. 硬脆单晶材料塑性域去除机理研究进展[J]. 机械工程学报, 2019, 55(3): 181-190.
LI Chen, ZHANG Feihu, ZHANG Xuan, RAO Xiaoshuang. Research Progress of Ductile Removal Mechanism for Hard-brittle Single Crystal Materials[J]. Journal of Mechanical Engineering, 2019, 55(3): 181-190.
[1] MENG B,ZhANG F,LI Z. Deformation and removal characteristics in nanoscratching of 6H-SiC with Berkovich indenter[J]. Materials Science in Semiconductor Processing,2015,31:160-165. [2] DIEBOLD A,JIA Z,GRAUMANN I J,et al. High-power Yb:GGG thin-disk laser oscillator:First demonstration and power-scaling prospects[J]. Optics Express,2017,25(2):1452-1462. [3] SHI Y,CHEN Q W,SHI J L. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics[J]. Optical Materials,2009,31(5):729-733. [4] BASTAWROS A F,CHANDRA A,POOSARLA P A. Atmospheric pressure plasma enabled polishing of single crystal sapphire[J]. CIRP Annals,2015,64(1):515-518. [5] NAKAGOMI S,MOMO T,TAKAHASHI S,et al. Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction[J]. Applied Physics Letters,2013,103(7):072105. [6] CHENG J,GONG Y. Experimental study of surface generation and force modeling in micro-grinding of single crystal silicon considering crystallographic effects[J]. International Journal of Machine Tools and Manufacture,2014,77:1-15. [7] MIYASHITA M. 1st annual precision engineering conference[J]. North Carolina State University,Raleigh,NC,USA,1985,7. [8] KING R F,TABOR D. The strength properties and frictional behavior of brittle solids[C]//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences. The Royal Society,1954,223(1153):225-238. [9] HUERTA M,MALKIN S. Grinding of glass:The mechanics of the process[J]. Journal of Engineering for Industry,1976,98(2):459-467. [10] MOLLOY P,SCHINKER M G,DOLL W. Brittle fracture mechanisms in single point glass abrasion[C]//Hague International Symposium. International Society for Optics and Photonics,1987:81-88. [11] CHANDRASEKAR S,SATHYANARAYANAN G. An investigation into the mechanics of diamond grinding of brittle materials[C]//15th North American Manufacturing Research Conference Proceedings. 1987,2:499-505. [12] BIFANO T G,DOW T A,SCATTERGOOD R O. Ductile-regime grinding:A new technology for machining brittle materials[J]. Journal of engineering for industry,1991,113(2):184-189. [13] BALL M J,MURPHY N A,SHORE P. Electrolytically assisted ductile-mode diamond grinding of BK7 and SF10 optical glasses[C]//Commercial Applications of Precision Manufacturing at the Sub-Micron Level. International Society for Optics and Photonics,1992,1573:30-39. [14] ZHONG Z,VENKATESH V C. Generation of parabolic and toroidal surfaces on silicon and silicon-based compounds using diamond cup grinding wheels[J]. CIRP Annals-Manufacturing Technology,1994,43(1):323-326. [15] CARLISLE K,SHORE P. Experiences in the development of ultra stiff CNC aspheric generating machine tools for ductile regime grinding of brittle materials[M]. Heidelberg:Springer,1991. [16] NAMBA Y,ABE M,KOBAYASGI A. Ultraprecision grinding of optical glasses to produce super-smooth surfaces[J]. CIRP Annals-Manufacturing Technology,1993,42(1):417-420. [17] LIU X,ZHANG B,DENG Z. Grinding of nanostructured ceramic coatings:Surface observations and material removal mechanisms[J]. International Journal of Machine Tools and Manufacture,2002,42(15):1665-1676. [18] ZHANG B,ZHENG X L,TOKURA H,et al. Grinding induced damage in ceramics[J]. Journal of materials processing technology,2003,132(1-3):353-364. [19] HOCKEY B J. Plastic deformation of aluminum oxide by indentation and abrasion[J]. Journal of the American Ceramic Society,1971,54(5):223-231. [20] HUANG L,BONIFACIO C,SONG D,et al. Investigation into the microstructure evolution caused by nanoscratch-induced room temperature deformation in M-plane sapphire[J]. Acta Materialia,2011,59(13):5181-5193. [21] TAYLOR C R,STACH E A,SALAMO G,et al. Nanoscale dislocation patterning by ultralow load indentation[J]. Applied Physics Letters,2005,87(7):073108. [22] OLIVER D J,BRADBY J E,WILLIAMS J S,et al. Thickness-dependent phase transformation in nanoindented germanium thin films[J]. Nanotechnology,2008,19(47):475709. [23] WASMER K,GASSILLOUD R,MICHLER J,et al. Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP[J]. Journal of Materials Research,2012,27(1):320-329. [24] GUO J,REDDY K,HIRATA A,et al. Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride[J]. Acta Materialia,2015,88:252-259. [25] GUO X,GUO Q,LI Z,et al. Size and crystallographic orientation effects on the mechanical behavior of 4h-sic micro-/nano-pillars[J]. Metallurgical and Materials Transactions A,2018,49(2):439-445. [26] CHANG L,ZHANG L. Deformation mechanisms at pop-out in monocrystalline silicon under nanoindentation[J]. Acta Materialia,2009,57(7):2148-2153. [27] CHANG L,ZHANG L. Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in:A nanoindentation study under ultra-low loads[J]. Materials Science and Engineering:A,2009,506(1-2):125-129. [28] WU Y Q,HUANG H,ZOU J,et al. Nanoscratch-induced phase transformation of monocrystalline Si[J]. Scripta Materialia,2010,63(8):847-850. [29] WANG Y,ZOU J,HUANG H,et al. Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding[J]. Nanotechnology,2007,18(46):465705. [30] YAN J. Laser micro-Raman spectroscopy of single-point diamond machined silicon substrates[J]. Journal of Applied Physics,2004,95(4):2094-2101. [31] YAN J,ZHNAG Z,KURIYAGAWA T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide[J]. International Journal of Machine Tools and Manufacture,2009,49(5):366-374. [32] MORRIS J C,CALLAHAN D L,KULIK J,et al. Origins of the ductile regime in single-point diamond turning of semiconductors[J]. Journal of the American Ceramic Society,1995,78(8):2015-2020. [33] HUANG H,YAN J. New insights into phase transformations in single crystal silicon by controlled cyclic nanoindentation[J]. Scripta Materialia,2015,102:35-38. [34] HUANG H,YAN J. Volumetric and timescale analysis of phase transformation in single-crystal silicon during nanoindentation[J]. Applied Physics A,2016,122(6):607. [35] HUANG H,YAN J. Possibility for rapid generation of high-pressure phases in single-crystal silicon by fast nanoindentation[J]. Semiconductor Science and Technology,2015,30(11):115001. [36] HUANG H,YAN J. In situ characterization of formation and growth of high-pressure phases in single-crystal silicon during nanoindentation[J]. Applied Physics A,2016,122(4):409. [37] WU H,MELKOTE S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon:Role of phase transformation and slip[J]. Materials Science and Engineering:A,2012,549:200-205. [38] GOGOTSI Y,ZHOU G,KU S S,et al. Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon[J]. Semiconductor Science and Technology,2001,16(5):345. [39] GOGOTSI Y,BAEK C,KIRSCHT F. Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon[J]. Semiconductor Science and Technology,1999,14(10):936. [40] KOVALCHENKO A,GOGOTSI Y,DOMNICH V,et al. Phase transformations in silicon under dry and lubricated sliding[J]. Tribology Transactions,2002,45(3):372-380. [41] MATSUMOTO M,HUANG H,HARADA H,et al. On the phase transformation of single-crystal 4H-SiC during nanoindentation[J]. Journal of Physics D:Applied Physics,2017,25(26):265303. [42] PATTEN J,FESPERMAN R,KUMAR S,et al. High-pressure phase transformation of silicon nitride[J]. Applied Physics Letters,2003,83(23):4740-4742. [43] CHROBAK D,NORDLUND K,NOWAK R. Nondislocation origin of GaAs nanoindentation pop-in event[J]. Physical Review Letters,2007,98(4):045502. [44] NOWAK R,CHROBAK D,NAGAO S,et al. An electric current spike linked to nanoscale plasticity[J]. Nature Nanotechnology,2009,4(5):287-291. [45] ZHANG Z,HUO Y,GUO D. A model for nanogrinding based on direct evidence of ground chips of silicon wafers[J]. Science China Technological Sciences,2013,56(9):2099-2108. [46] ZHANG Z,WANG B,KANG R,et al. Changes in surface layer of silicon wafers from diamond scratching[J]. CIRP Annals-Manufacturing Technology,2015,64(1):349-352. [47] ZHANG Z,DU Y,WANG B,et al. Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding[J]. Tribology Letters,2017,65(4):132. [48] FANG F,WU H,ZHOU W,et al. A study on mechanism of nano-cutting single crystal silicon[J]. Journal of Materials Processing Technology,2007,184(1-3):407-410. [49] ZHANG Q,FU Y,SU H,et al. Surface damage mechanism of monocrystalline silicon during single point diamond grinding[J]. Wear,2018,396:48-55. [50] MENG B,ZHANG Y,ZHANG F. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter[J]. Applied Physics A,2016,122(3):247. [51] WU Y Q,HUANG H,ZOU J. Lattice bending in monocrystalline GaAs induced by nanoscratching[J]. Materials Letters,2012,80:187-190. [52] LI C,ZHANG F,MENG B,et al. Research of material removal and deformation mechanism for single crystal GGG (Gd3Ga5O12) based on varied-depth nanoscratch testing[J]. Materials & Design,2017,125:180-188. [53] LI C,ZHANG F,WANG X,et al. Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation[J]. Applied Optics,2018,57(14):3661-3668. [54] GAO S,WU Y,KANG R,et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3[J]. Materials Science in Semiconductor Processing,2018,79:165-170. [55] KHAN A S,LIU J A. deformation mechanism based crystal plasticity model of ultrafine-grained/nanocrystalline FCC polycrystals[J]. International Journal of Plasticity,2016,86:56-69. [56] PANZARINO J F,PAN Z,RUPERT T J. Plasticity-induced restructuring of a nanocrystalline grain boundary network[J]. Acta Materialia,2016,120:1-13. [57] KUMAR K S,VAN H,SURESH S. Mechanical behavior of nanocrystalline metals and alloys1[J]. Acta Materialia,2003,51(19):5743-5774. [58] MEYERS M A,MISHRA A,BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science,2006,51(4):427-556. [59] ZHAO Y,TOTH L S,MASSION R,et al. Role of grain boundary sliding in texture evolution for nanoplasticity[J]. Advanced Engineering Materials,2018,20:1700212. [60] CAHN J W,TAYLOR J E. A unified approach to motion of grain boundaries,relative tangential translation along grain boundaries,and grain rotation[J]. Acta Materialia,2004,52(16):4887-4898. [61] WANG L,XIN T,KONG D,et al. In situ observation of stress induced grain boundary migration in nanocrystalline gold[J]. Scripta Materialia,2017,134:95-99. [62] FARKAS D,FRØSETH A,VAN S H. Grain boundary migration during room temperature deformation of nanocrystalline Ni[J]. Scripta Materialia,2006,55(8):695-698. [63] LIU P,MAO S C,WANG L H,et al. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline,textured,columnar-structured thin gold films[J]. Scripta Materialia,2011,64(4):343-346. [64] WANG L,TENG J,LIU P,et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum[J]. Nature Communications,2014,5:4402. [65] MARGULIES L,WINTHER G,POULSEN H F. In situ measurement of grain rotation during deformation of polycrystals[J]. Science,2001,291(5512):2392-2394. [66] HASLAM A J,PHILLPOT S R,WOLF D,et al. Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation[J]. Materials Science and Engineering:A,2001,318(1-2):293-312. [67] OLMSTED D L,FOILES S M,HOLM E A. Survey of computed grain boundary properties in face-centered cubic metals:I. Grain boundary energy[J]. Acta Materialia,2009,57(13):3694-3703. [68] CHEONG W C D,ZHANG L C. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation[J]. Nanotechnology,2000,11(3):173. [69] MYLVAGANAM K,ZHANG L C. Nanotwinning in monocrystalline silicon upon nanoscratching[J]. Scripta Materialia,2011,65(3):214-216. [70] GOEL S,KOVALCHENKO A,STUKOWSKI A,et al. Influence of microstructure on the cutting behaviour of silicon[J]. Acta Materialia,2016,105:464-478. [71] GOEL S,LUO X,AGRAWAL A,et al. Diamond machining of silicon:A review of advances in molecular dynamics simulation[J]. International Journal of Machine Tools and Manufacture,2015,88:131-164. [72] GOEL S,LUO X,REUBEN R L. Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide[J]. Computational Materials Science,2012,51(1):402-408. [73] LUO X,GOEL S,REUBEN R L. A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide[J]. Journal of the European Ceramic Society,2012,32(12):3423-3434. [74] GOEL S,STUKOWSKI A,LUO X,et al. Anisotropy of single-crystal 3C-SiC during nanometric cutting[J]. Modelling and Simulation in Materials Science and Engineering,2013,21(6):065004. [75] MISHRA M,SZLUFARSKA I. Possibility of high-pressure transformation during nanoindentation of SiC[J]. Acta Materialia,2009,57(20):6156-6165. [76] CHAYOSHI S Z,LUO X. Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures[J]. Materials Science and Engineering:A,2016,654:400-417. [77] XIAO G,TO S,ZHANG G. The mechanism of ductile deformation in ductile regime machining of 6H SiC[J]. Computational Materials Science,2015,98:178-188. |
[1] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[2] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[3] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[4] | 崔歆, 李长河, 张彦彬, 杨敏, 周宗明, 刘波, 王春锦. 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60(9): 323-337. |
[5] | 赫青山, 谢永晨, 崔仲鸣, 傅玉灿. 难加工材料绿色磨削用相变储热复合砂轮的研制[J]. 机械工程学报, 2024, 60(3): 405-414. |
[6] | 朱子俊, 朱祥龙, 董志刚, 康仁科, 鲍岩. 磨削加工颤振稳定性研究综述[J]. 机械工程学报, 2023, 59(21): 15-33. |
[7] | 段继豪, 安佳乐, 吴卓繁, 淮文博, 高峰. 航发叶片砂碟磨削接触特性及材料去除机理[J]. 机械工程学报, 2023, 59(17): 349-360. |
[8] | 段继豪, 周泽伟, 安佳乐, 高峰, 李艳, 淮文博. 基于接触轮柔顺度调控的叶片砂带磨削接触特性研究[J]. 机械工程学报, 2023, 59(15): 354-365. |
[9] | 高腾, 李长河, 张彦彬, 杨敏, 曹华军, 王大中, 刘新, 周宗明, 刘波. 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报, 2023, 59(13): 325-342. |
[10] | 毛聪, 孙鹏程, 唐伟东, 张明军, 罗源嫱, 胡永乐, 张德嘉, 唐昆, 管付如. 磨削白层特性及其与声发射信号的相关性[J]. 机械工程学报, 2023, 59(9): 349-359. |
[11] | 王成武, 丁金福, 袁巨龙, 许永超, 张克华, 陆惠宗, 鄂世举, 姚蔚峰, 吴喆, 贺新升, 王华东. 椭圆内腔表面磨粒流均匀化光整加工研究[J]. 机械工程学报, 2022, 58(19): 306-314. |
[12] | 戴剑博, 苏宏华, 王忠宾, 丁文锋, 傅玉灿, 陈佳佳. 多晶碳化硅陶瓷磨削裂纹损伤形成机理研究[J]. 机械工程学报, 2022, 58(13): 307-320. |
[13] | 郭维诚, 孙高翔, 丁子珊, 吴重军, 刘晓. 考虑微观晶粒的磨削相变分析与工艺优化研究[J]. 机械工程学报, 2022, 58(11): 269-281. |
[14] | 别文博, 赵波, 高国富, 向道辉, 赵重阳, 唐进元. 切向超声振动辅助成形磨削齿轮的切削系数建模与试验研究[J]. 机械工程学报, 2022, 58(7): 295-308. |
[15] | 贾东洲, 李长河, 张彦彬, 杨敏, 曹华军, 刘波, 周宗明. 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报, 2022, 58(5): 198-211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||