• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (23): 102-111.doi: 10.3901/JME.2018.23.102

• 机械动力学 • 上一篇    下一篇

扫码分享

非凸罚正则化稀疏低秩矩阵的大型减速机圆锥滚子轴承微弱故障诊断

李庆1, LIANG STEVEN Y1,2   

  1. 1. 东华大学机械工程学院 上海 201620;
    2. 佐治亚理工学院乔治-伍德拉夫机械工程学院 亚特兰大 30332-0405 美国
  • 收稿日期:2017-12-06 修回日期:2018-07-11 出版日期:2018-12-05 发布日期:2018-12-05
  • 通讯作者: 李庆(通信作者),男,1988年出生,博士研究生。主要研究方向为动态信号处理、机器学习与旋转机械故障诊断。E-mail:suesliqing@163.com
  • 作者简介:LIANG STEVEN Y,男,1958年出生,博士,教授,博士研究生导师。主要研究方向为先进制造科学与技术、智能制造、极端制造与理论等。E-mail:steven.liang@me.gatech.edu
  • 基金资助:
    国家自然科学基金(51675096)和中央高校基本科研业务费专项资金(CUSF-DH-D-2017059)资助项目。

Incipient Fault Diagnosis for Large Reducer Taper Roller Bearings Based on Non-convex Penalty Regularization Sparse Low-rank Matrix Approach

LI Qing1, LIANG STEVEN Y1,2   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620;
    2. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0405, USA
  • Received:2017-12-06 Revised:2018-07-11 Online:2018-12-05 Published:2018-12-05

摘要: 在强烈外界噪声下或轴承故障早期发展阶段,从轴承非平稳故障信号中提取微弱冲击成分是一个难点,针对这一问题,提出了一种新的基于非凸罚正则化稀疏低秩矩阵(Non-convex penalty regularization sparse low-rank matrix,NPRSLM)的轴承微弱故障特征提取方法。该方法不依赖振动信号结构的先验知识,也无需采集大量的样本信号来训练字典,避免了传统稀疏表示设计冗余字典带来的缺乏物理意义,通用性差等缺陷。该方法的核心思想是把采集的振动信号与待提取的故障脉冲看作一维矩阵(向量),通过求解稀疏正则化的反问题得到故障脉冲信号。在建模上,通过引入非凸罚函数代替了传统最小化L1-norm融合套索算法,建立非凸罚正则化稀疏低秩矩阵模型,理论推导了所建立模型的严格凸性,并利用交替方向乘子法(Alternating direction method of multipliers,ADMM)对模型进行求解,同时讨论了模型参数对模型算法的收敛性问题、凸性与非凸性边界取值问题等。仿真算例与大型减速机圆锥滚子轴承诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的微弱冲击特征,而且改善了传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的脉冲能量大幅衰减与脉冲数目丢失问题。

关键词: 非凸罚正则化, 交替方向乘子法, 微弱故障, 稀疏低秩矩阵, 圆锥滚子轴承

Abstract: Generally, it is a difficulty to extract weak periodical impulses from the bearing non-stationary vibration signals that are often corrupted by heavy background noise, especially at the early stage of bearing faulty development. In this paper, a novel fault feature extraction methodology is proposed based on non-convex penalty regularization sparse low-rank matrix (NPRSLM) for taper roller bearing. The proposed NPRSLM model neither relies on the priori knowledge of the analyzed signal, nor requires a large number of sample signals to form a training dictionary before diagnosis, thus it avoids a series of redundant dictionary problems such as physical model matching problem and poor universality. The core idea is that the proposed method considers the observed signal and fault impulses as the one-dimensional matrix (or vector), and the fault impulses can be obtained by solving the anti-problem of the sparse regularization. Specifically, on the modeling system, the non-convex function is introduced to replace the conventional minimization L1-norm fused lasso low-rank matrix (ML1-FLLM) so as to reconstruct a novel non-convex regularization model. Meanwhile, the solution of the proposed NPRSLM model is derived by ADMM technique, and strictly convex property, boundary condition problem and convergence of the proposed model are also provided. The simulation and practical rolling bearing experiments indicate that the proposed method not only successfully extract weak periodical impulses from observed signal corrupted by heavy background noise, but also the energy attenuation problem and impulse loss problem are improved when the conventional ML1-FLLM process the weak fault vibration signals.

Key words: alternating direction method of multipliers, incipient fault, non-convex regularization, sparse low-rank matrix, taper roller bearings

中图分类号: