[1] 倪寿勇, 李迎. 旋风铣削加工刀齿切削力在线测量与预报[J]. 机械工程学报, 2015, 51(11):207-212. NI Shouyong, LI Ying. The measurement and prediction of cutting force for individual tooth in whirling process[J]. Journal of Mechanical Engineering, 2015, 51(11):207-212. [2] 曹玉杰. 复杂曲面薄壁件五轴加工变形预测技术研究[D]. 大连:大连理工大学, 2014. CAO Yujie. Research on deformation prediction of five-axis machining thin-walled complex surface[D]. Dalian:Dalian University of Technology, 2014. [3] 孙杰, 柯映林. 残余应力对航空整体结构件加工变形的影响分析[J]. 机械工程学报, 2005, 41(2):117-122. SUN Jie, KE Yinglin. Study on machining distortion of unitization airframe due to residual stress[J]. Journal of Mechanical Engineering, 2005, 41(2):117-122. [4] RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15):1629-1641. [5] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5):542-551. [6] 敖志强. 航空薄壁件铣削加工变形分析与试验研究[D]. 西安:西北工业大学, 2006. AO Zhiqiang. Analysis and experimental research of milling distortion of aeronautical thin-walled parts[D]. Xi'an:Northwestern Polytechnical University, 2006. [7] 楼文明. 航空薄壁件加工变形补偿技术研究[D]. 西安:西北工业大学, 2007. LOU Wenming. Compensation technology of machining distortion of aeronautical thin-walled parts[D]. Xi'an:Northwestern Polytechnical University, 2006. [8] 胡创国. 薄壁件精密切削变形控制与误差补偿技术研[D]. 西安:西北工业大学, 2007. HU Chuangguo. Deformation control and error compensation in precision machining of thin-walled parts[D]. Xi'an:Northwestern Polytechnical University, 2007. [9] BUDAK E. Analytical models for high performance milling. Part I:Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1478-1488. [10] FERRY W B, ALTINTAS Y. Virtual five-axis flank milling of jet engine impellers-Part I:Mechanics of five-axis flank milling[J]. Journal of Manufacturing Science and Engineering, 2008, 130:011005, 1-11. [11] FERRY W B, ALTINTAS Y. Virtual five-axis flank milling of jet engine impellers-Part Ⅱ:Feed rate optimization of five-axis flank milling[J]. Journal of Manufacturing Science and Engineering, 2008, 130:011013, 1-13. [12] 陈华. 薄壁件加工过程优化仿真技术研究[D]. 南京:南京航空航天大学, 2008. CHEN Hua. Research on simulation technology in optimization machining process of thin-walled parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008. [13] 董龙山. 铝合金薄壁件加工变形控制技术研究[D]. 廊坊:北华航天工业学院, 2015. DONG Longshan. Machining deflection control of aluminium alloy thin-walled parts[D]. Langfang:North China Institute of Aerospace Engineering, 2015. [14] HU Po, HAN Zhenyu, FU Hongya, et al. Architecture and implementation of closed-loop machining system based on open STEP-NC controller[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(5-8):1361-1375. [15] 李茂月,韩振宇,富宏亚,等. 基于开放式控制器的铣削颤振在线抑制[J].机械工程学报, 2012, 48(17):172-182. LI Maoyue, HAN Zhenyu, FU Fongya, et al. Online milling chatter suppression based on open architecture controller[J]. Journal of Mechanical Engineering, 2012, 48(17):172-182. [16] 黄晓明. 铝合金航空整体结构件加工变形机理与预测研究[D]. 济南:山东大学, 2015. HUANG Xiaoming. Deformation mechanism and prediction of aluminum alloy monolithic component in the milling[D]. Jinan:Shandong University, 2015. [17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature[C]//Proceedings of the Seventh International Symposium on Ballistics, 1983, 541-547. [18] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. International Journal of Impact Engineering, 2001, 25:211-231. |