• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (22): 250-261.doi: 10.3901/JME.2025.22.250

• 运载工程 • 上一篇    

扫码分享

分布式驱动电动汽车回馈制动单侧电机失效的机电液复合控制

张利鹏1,2, 刘一帆1,2, 刘帅帅1,2, 任长安1,2, 高铭泽1,2, 樊小健1,2   

  1. 1. 燕山大学车辆与能源学院 秦皇岛 066004;
    2. 燕山大学河北省特种运载装备重点实验室 秦皇岛 066004
  • 收稿日期:2024-11-17 修回日期:2025-05-07 发布日期:2026-01-10
  • 作者简介:张利鹏(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为智能车辆动力学与控制、新能源汽车复合传动、智能电动运载装备开发。E-mail:evzlp@ysu.edu
    刘一帆,男,1999年出生,硕士研究生。主要研究方向为线控制动控制。E-mail:610562638@qq.com
    刘帅帅,男,1994年出生,博士研究生。主要研究方向为车辆动力学与智能控制。E-mail:ev_ssliu@stumail.ysu.edu.cn
    任长安,男,1994年出生,博士研究生。主要研究方向为新能源汽车复合传动。E-mail:651903695@qq.com
    高铭泽,男,1998年出生,硕士研究生。主要研究方向为车辆动力学与控制。E-mail:1278579180@qq.com
    樊小健,男,1998年出生,硕士研究生。主要研究方向为车辆动力学和新能源汽车能量管理。E-mail:1369460942@qq.com
  • 基金资助:
    国家自然科学基金(52272407); 中央引导地方科技发展资金(226Z2202G); 河北省自然科学基金(E2024203257); 河北省高等学校科学研究(ZD2022029)资助项目。

Electromechanical Hydraulic Composite Control for Regenerative Braking of Single Motor Failure in Distributed Drive Electric Vehicles

ZHANG Lipeng1,2, LIU Yifan1,2, LIU Shuaishuai1,2, REN Changan1,2, GAO Mingze1,2, FAN Xiaojian1,2   

  1. 1. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004;
    2. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004
  • Received:2024-11-17 Revised:2025-05-07 Published:2026-01-10

摘要: 分布式驱动电动汽车下长坡回馈制动时出现一侧电机失效,会使制动强度大幅衰减以及因两侧制动不平衡而跑偏,通过截断异侧电机制动力矩和液压制动主动补偿虽可保证制动效能,但无法修正跑偏及继续回馈能量。为解决以上问题,将基于所发明的分布式/集中式双模耦合驱动系统和电液制动系统探索新的机电液复合控制方法。首先,分析基于双模耦合驱动系统进行单侧电机失效后回馈制动可行性;然后,进行整车动力学建模和控制器设计,针对复合控制精度差问题,提出结合矢量控制的模型预测控制方法;最后,通过硬件在环仿真验证了复合控制效果。研究结果表明,在一侧电机制动失效后除施加转矩截断和液压补偿控制外,利用未失效电机进行差动驱动能够保证制动安全,此后将双电机分布式驱动切换为单电机集中式驱动,则可以继续进行回馈制动并保证预期制动性能。所提出机电液复合控制将控制精度提高了64.83%,制动能量回收值提升了58.70%,有效保证了车辆制动安全和能量回馈能力。

关键词: 分布式驱动, 回馈制动失效, 双模耦合驱动, 机电液复合控制, 模型预测控制

Abstract: In the regenerative braking of distributed drive electric vehicles on a long slope, the failure of one side motor can significantly weaken the braking strength and cause deviation due to imbalanced braking on both sides. Although cutting off the braking torque of the opposite side motor and actively compensating hydraulic braking can ensure the braking efficiency of the vehicle, it is impossible to correct deviation and continue to feedback energy. To solve the above problems, a new electromechanical hydraulic composite control method is explored based on the invented distributed/centralized dual-mode coupling drive system and electro-hydraulic braking system. Firstly, the feasibility of using the dual-mode coupling drive system for regenerative braking after a single motor failure is analyzed; Then, the vehicle dynamics modeling and controller design are conducted, and a model predictive control method combined with vector control to address the issue of poor precision in composite brake control is proposed; Finally, the composite control effect is verified through the hardware in the loop simulation. The research results indicate that, in addition to torque truncation and hydraulic compensation control, differential drive using the non-failed motor can ensure braking safety after the braking failure of one side motor. Afterwards, switching the two motors distributed drive to a single motor centralized drive can continue to perform regenerative braking and ensure the expected braking performance. The proposed electromechanical hydraulic composite control improves control accuracy by 64.83%, and the braking energy recovery value by 58.70%, effectively ensuring vehicle braking safety and energy recovery capability.

Key words: distributed drive, regenerative braking failure, dual-mode coupling drive, electromechanical hydraulic composite control, model predictive control

中图分类号: