• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (16): 358-373.doi: 10.3901/JME.2025.16.358

• 交叉与前沿 • 上一篇    

扫码分享

含AI模型机电系统环境适应性试验与评估方法

张书锋1,2, 宋国锋1,2,3, 李兴格4, 陈循1,2   

  1. 1. 国防科技大学智能科学学院 长沙 410073;
    2. 国防科技大学装备状态感知与敏捷保障全国重点实验室 长沙 410073;
    3. 西北机电工程研究所 咸阳 712099;
    4. 军事科学院国防科技创新研究院 北京 100071
  • 接受日期:2024-09-05 出版日期:2025-02-23 发布日期:2025-02-23
  • 作者简介:张书锋,男,1987年出生,博士,副研究员,硕士研究生导师。主要研究方向为智能装备综合保障。E-mail:sfzhang@nudt.edu.cn;李兴格(通信作者),男,1995年出生,博士,助理研究员。主要研究方向为天基无人系统健康管理。E-mail:lixingge1995@126.com
  • 基金资助:
    国防科工局国防基础科研计划重点(WDZC20205500303)和湖南省研究生科研创新(CX20210061)资助项目

Environmental Worthiness Testing and Evaluation of Electromechanical System Containing AI Model

ZHANG Shufeng1,2, SONG Guofeng1,2,3, LI Xingge4, CHEN Xun1,2   

  1. 1. College of Intelligent Science and Technology, National University of Defense Technology, Changsha 410073;
    2. National Key Laboratory of Equipment State Sensing and Smar Suppot, National University of Defense Technology, Changsha 410073;
    3. Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099;
    4. Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071
  • Accepted:2024-09-05 Online:2025-02-23 Published:2025-02-23

摘要: 机械化、信息化和智能化的深度融合是未来装备的发展趋势,越来越多的人工智能(Artificial intelligence, AI)模型嵌入机电系统,其环境适应性评估不仅需要考虑硬件失效,更需要考虑环境对AI模型功能的影响。针对含AI模型机电系统的环境适应性评估需求,以数据分布度量函数为切入点,讨论含AI模型机电系统的环境适应性内涵,构建基于数据分布度量的环境适应度评价指标。考虑到基于性能数据的建模方法可以提供更多定量化信息,能够将模型性能变化数据与环境适应度函数结合起来,分别提出基于性能变化轨迹和性能变化量分布的环境适应性定量评估方法。最后,以含AI模型视觉感知系统为例,选择浓雾恶劣天气和振动两种环境应力开展试验,获取视觉感知系统元数据集在不同测试环境样本下的性能变化量,得到系统的环境适应度曲线和平均失效差异值,验证方法的准确性与有效性。

关键词: 人工智能模型(AI模型), 环境适应性, 数据分布度量, 性能数据建模, 元数据集

Abstract: The profound integration of mechanization, informatization, and intelligentization represents the development trend of future equipment. An increasing number of electromechanical systems embed artificial intelligence(AI) models, necessitating the evaluation of environmental worthiness. This evaluation must not only consider hardware failures but also take into account the impact of the environment on the functionality of AI models. Aiming at the requirements of environmental worthiness evaluation for electromechanical systems containing AI models(ESAM), it takes the data distribution measurement function as a starting point, discusses the connotation of environmental worthiness in ESAM, and constructs an environmental worthiness index based on data distribution measurement. A quantitative evaluation method of environmental worthiness based on performance trajectories and distribution is proposed, considering that modeling methods using performance data can provide more quantitative insights by integrating model performance with environmental worthiness functions. Finally, using an AI-based visual perception system as an example, the study examines performance data under varying fog and vibration conditions in testing environments. It derives environmental worthiness curves and average failure discrepancy values, confirming the validity and effectiveness of the proposed method.

Key words: artificial intelligence model(AI), environmental worthiness, data distribution measurement, performance data modeling, meta-dataset

中图分类号: