• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 162-173.doi: 10.3901/JME.2025.15.162

• 人-机器人协作 • 上一篇    

扫码分享

面向人机协作重载搬运的液压双臂协调运动控制

沈昌杰1, 程敏1, 孙博林1, 徐兵2   

  1. 1. 重庆大学高端装备机械传动全国重点实验室 重庆 400044;
    2. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027
  • 收稿日期:2025-01-08 修回日期:2025-06-10 发布日期:2025-09-28
  • 作者简介:沈昌杰,男,1999年出生。主要研究方向为机电液一体化、液压机械臂高精度运动控制及柔顺控制。E-mail:913134502@qq.com;程敏(通信作者),1987年出生,博士,教授,博士研究生导师。主要研究方向为工程机械电液控制系统的节能与运动控制以及机电一体化系统设计等。E-mail:chengmin@cqu.edu.cn
  • 基金资助:
    国家自然科学基金(52322503,U21A20124); 重庆市自然科学基金(2024NSCQ-JQX0123)资助项目。

Hydraulic Dual-arm Manipulator Coordinated Motion Control for Human-robot Collaborative Heavy Load Handling

SHEN Changjie1, CHENG Min1, SUN Bolin1, XU Bing2   

  1. 1. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044;
    2. State Key Laboratory of Fluid Power Components and Mechatronic Systems, Zhejiang University, Hangzhou 310027
  • Received:2025-01-08 Revised:2025-06-10 Published:2025-09-28

摘要: 针对多自由度液压双臂与人协作完成重载搬运任务中因闭链耦合和液压系统的非线性特性等产生的内力调控不准确、人机交互不协调,提出一种面向人机协作重载搬运的液压双臂人机协调控制方法。首先,在分析人机协作下闭链系统的运动状态与物体内力映射关系的基础上,基于模块化动力学模型对液压机械臂中耦合刚体和液压系统进一步解耦,实现双臂闭链强耦合系统的精细化建模。然后,结合导纳控制的动态柔顺性和基于双臂接触力最小化的内力优化方法设计人机协调控制方法,以保留操作意图的前提下,避免物体因接触力作用过大而遭到破坏。最后,基于模块化动力学模型设计底层运动控制器作为双臂人机协调控制的基础。结果表明,人机协调控制下的液压双臂可根据操作意图实时调整物体轨迹,还实现了闭链系统内力在不同方向上的主动调节,其中在x轴和z轴上的内力误差分别降低44.28%~82.46%和44.81%~53.69%。

关键词: 液压双臂, 人机协作, 协调运动控制, 内力控制

Abstract: To address the challenges of inaccurate internal force regulation and uncoordinated human-robot interaction caused by closed-chain coupling and nonlinear hydraulic system characteristics in multi-degree-of-freedom hydraulic dual-arm during human-robot collaborative heavy-load transportation tasks, a hydraulic dual-arm human-robot coordinated control method is proposed for collaborative heavy-load handling. First, based on the analysis of the motion states of the closed-chain system and internal force of the object mapping relationship under human-robot collaboration, the coupled rigid-body dynamics and hydraulic system dynamics in hydraulic manipulators are further decoupled through modular dynamic model, achieving refined modeling of the strongly coupled dual-arm closed-chain system. Subsequently, a human-robot coordinated control strategy is developed by integrating the dynamic compliance of admittance control with an internal force optimization method that minimizes dual-arm contact forces to prevent object damage caused by excessive contact forces while preserving operational intent. Finally, a motion controller is designed base on modular dynamic model as the foundation for the hydraulic dual-arm human-robot coordinated controller. Experimental results show that the dual-arm under human-robot coordinated control not only adaptively adjust object trajectories according to operator intent but also achieve active regulation of internal forces across different directions. Specifically, reductions in internal force errors reach 44.28%-82.46% along the x-axis direction and 44.81%-53.69% along the z-axis direction.

Key words: hydraulic dual-arm manipulator, human-robot collaboration, coordinated motion control, internal force control

中图分类号: