• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (10): 367-375.doi: 10.3901/JME.2025.10.367

• 运载工程 • 上一篇    

扫码分享

真空管道列车激波脱离的理论与仿真研究

宋嘉源, 李田, 张继业   

  1. 西南交通大学轨道交通运载系统全国重点实验室 成都 610031
  • 收稿日期:2024-06-03 修回日期:2025-01-09 发布日期:2025-07-12
  • 作者简介:宋嘉源,男,1999年出生。主要研究方向为空气动力学。E-mail:478901854@qq.com;李田(通信作者),男,1984年出生,博士,副研究员,博士研究生导师。主要研究方向为空气动力学,流动控制与应用。E-mail:litian2008@home.swjtu.edu.cn;张继业,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为空气动力学,稳定性理论与应用。E-mail:jyzhang@home.swjtu.edu.cn
  • 基金资助:
    中央高校基本科研业务费(2682023ZTPY036)和2024年度交大设计院科技研发(JDDKYCF2024002)资助项目。

Theoretical and Numerical Studies on Shock Wave Detachment of Evacuated Tube Train

SONG Jiayuan, LI Tian, ZHANG Jiye   

  1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031
  • Received:2024-06-03 Revised:2025-01-09 Published:2025-07-12

摘要: 研究真空管道列车尾部激波气动特性对真空管道运输系统的设计至关重要。根据一维无黏流动理论推导了尾部激波脱离的临界速度公式,得到阻塞比与激波脱离临界速度关系曲线。以某高速磁浮列车为研究对象,基于Sutherland黏性公式及SST k-ω湍流模型,数值仿真600~1 200 km/h速度等级下三维可压缩亚跨音速真空管道列车的气动特性,对比理论推导与数值仿真计算的结果。研究结果表明:尾部激波附着在尾车流线型产生的逆压梯度造成列车表面边界层分离,尾涡随车速增加向列车后方移动直到激波脱离。尾车气动阻力系数随车速增加先增大后减小,当车速等于激波脱离临界速度时阻力系数最大,压力系数幅值最小。一维流动理论能较准确的预测激波脱离临界速度,理论推导与数值仿真计算结果之间的最大误差小于7.63%。

关键词: 真空管道磁浮列车, 一维流动, 流场特性, 气动阻力, 激波脱离

Abstract: Research on aerodynamic characteristics of shock waves at the tail of evacuated tube train is essential for the design of evacuated tube transportation system. Based on the one-dimensional flow theory, the formula of the critical velocity of tail shock wave detachment is derived. Taking a high-speed maglev train as the research object, based on Sutherland equation and SST k-ω turbulence model, the aerodynamic characteristics of three-dimensional compressible subsonic and transonic evacuated tube train in speed of 600~1 200 km/h are numerically simulated. The results of the theoretical solution and numerical simulation are compared. The results show that the inverse pressure gradient of the attached tail shock wave causes the separation of the boundary layer on the train surface. The tail vortex moves to the rear of the train with the increase of train speed until the shock wave detached. The aerodynamic drag coefficient of the tail car increases, and then decreases with the incremental of the train speed. When the running speed is equal to the critical speed of the shock wave detachment, the drag coefficient is the largest and the magnitude of the pressure coefficient is the minimum. The one-dimensional flow theory predicts the critical velocity of shock wave detachment accurately, and the maximum error between theoretical derivation and numerical simulation is less than 7.63%.

Key words: evacuated tube train, one-dimensional flow, characteristics of field, aerodynamic drag, shock wave detachment

中图分类号: