[1] 叶林征,祝锡晶,郭策. 超声空化微射流建模与仿真[J]. 中国机械工程,2015,26(21):2890-2894. YE Linzheng,ZHU Xijing,GUO Ce. Ultrasonic Cavitation micro-jet modeling and simulation[J]. China Mechanical Engineering,2015,26(21):2890-2894. [2] 莫润阳,林书玉,王成会. 超声空化的研究方法及进展[J]. 应用声学,2009,28(5):389-400. MO Runyang,LIN Shuyu,WANG Chenghui. Methods of study on sound cavitation[J]. Applied Acoustics,2009,28(5):389-400. [3] DULAR M,PETKOVŠEK M. On the mechanisms of cavitation erosion-coupling high speed videos to damage patterns[J]. Experimental Thermal & Fluid Science,2015,68:359-370. [4] FRANC J P,RIONDET M,KARIMI A,et al. Material and velocity effects on cavitation erosion pitting[J]. Wear,2012,s274-275(275):248-259. [5] CHEN Haosheng,LI Jiang,CHEN Darong,et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear,2008,265(5-6):692-698. [6] ROY S C,FRANC J P,PELLONE C,et al. Determination of cavitation load spectra-Part1:Static finite element approach[J]. Wear,2015,344:110-119. [7] ROY S C,FRANC J P,RANC N,et al. Determination of cavitation load spectra-Part 2:Dynamic finite element approach[J]. Wear,2015,344:120-129. [8] HUTLI E,BONYÁR A,OSZETZKY D,et al. Plastic deformation and modification of surface characteristics in nano-and micro-levels and enhancement of electric field of FCC materials using cavitation phenomenon[J]. Mechanics of Materials,2016,92:289-298. [9] CHAHINE G L,KAPAHI A,CHOI J K,et al. Modeling of surface cleaning by cavitation bubble dynamics and collapse[J]. Ultrasonics Sonochemistry,2016,29:528-549. [10] 李根生,沈忠厚. 高压水射流理论及其在石油工程中应用研究进展[J]. 石油勘探与开发,2005,32(1):96-99. LI Gensheng,SHEN Zhonghou. Advances in researches and applications of water jet theory in petroleum engineering[J]. Petroleum Exploration and Development,2005,32(1):96-99. [11] 张汉辰,陈红玲,杨胜强,等. 超声空化去毛刺的理论分析及数值仿真[J]. 应用声学,2015,34(2):119-124. ZHANG Hanchen,CHEN Hongling,YANG Shengqiang,et al. Theoretical analysis and numerical simulation of ultrasonic cavitation deburring[J]. Journal of Applied Acoustics,2015,34(2):119-124. [12] HUTLI E,NEDELJKOVIC M S,BONYÁR A,et al. The ability of using the cavitation phenomenon as a tool to modify the surface characteristics in micro-and in nano-level[J]. Tribology International,2016,101:88-97. [13] 王星. 纳米胶体空化射流抛光及其关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2014. WANG Xing. Study on the key technology of nano particle colloid hydrodynamic cavitation jet polishing[D]. Harbin:Harbin Institute of Technology,2014. [14] 郭策,祝锡晶,王建青,等. 超声珩磨作用下两空化泡动力学特性[J]. 力学学报,2014,46(6):879-886. GUO Ce,ZHU Xijing,WANG Jianqing,et al. Dynamical behaviors of double cavitation bubbles under ultrasonic honing[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(6):879-886. [15] 刘国东,祝锡晶,郭策. 功率超声珩磨磨削区空化声场的建模与仿真研究[J]. 声学学报,2013,38(6):663-668. LIU Guodong,ZHU Xijing,GUO Ce. Research on modelling and simulation of cavitation sound field in the grinding zone of the power ultrasonic honing[J]. Acta Acustica,2013,38(6):663-668. [16] KARIMI A,MARTIN J L. Cavitation erosion of materials[J]. International Materials Reviews,2013,31:219-224. [16] PLESSET M S,CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics,1971,47(2):283-290. [18] 叶林征,祝锡晶,王建青,等. 基于SPH-FEM的超声珩磨空化微射流冲击研究[J]. 振动与冲击,2016,35(13):72-77. YE Linzheng,ZHU Xijing,WANG Jianqing,et al. Cavitation micro-jet impact in ultrasonic honing based on SPH-FEM[J]. Journal of Vibration and Shock,2016,35(13):72-77. [19] DULAR M. Hydrodynamic cavitation damage in water at elevated temperatures[J]. Wear,2016,346-347:78-86. [20] SOYAMA H,SEKINE Y. Sustainable surface modification using cavitation impact for enhancing fatigue strength demonstrated by a power circulating-type gear tester[J]. International Journal of Sustainable Engineering,2010,3(1):25-32. [21] TOH C K. The use of ultrasonic cavitation peening to improve micro-burr-free surfaces[J]. The International Journal of Advanced Manufacturing Technology,2007,31(7):688-693. |