• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 382-395.doi: 10.3901/JME.2025.07.382

• 机械动力学 • 上一篇    下一篇

扫码分享

一种改进的电动缸举升伺服机构动力学参数辨识方法

万子平1,2, 唐乐为1,3, 任广安2, 范大鹏2   

  1. 1. 湖南农业大学机电工程学院 长沙 410125;
    2. 国防科技大学智能科学学院 长沙 410073;
    3. 清华大学机械工程学院 北京 100084
  • 收稿日期:2024-04-24 修回日期:2024-11-01 发布日期:2025-05-12
  • 作者简介:万子平(通信作者),男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为机电伺服控制与无人智能平台。E-mail:wanziping15@nudt.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFB2004700)、国家自然科学基金区域创新发展联合基金(U19A2072)和国家自然科学基金(52105077)资助项目。

An Improved Parameter Identification Method of EMA Lifting Mechanism

WAN Ziping1,2, TANG Lewei1,3, REN Guangan2, FAN Dapeng2   

  1. 1. College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410125;
    2. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073;
    3. School of Mechanical Engineering, Tsinghua University, Beijing 100084
  • Received:2024-04-24 Revised:2024-11-01 Published:2025-05-12

摘要: 针对限定记忆区间的循环最小二乘法(Limited memory interval cyclic least squares method, CLS)对电动缸举升伺服机构的非线性扰动参数辨识不精确的问题,提出了一种基于扰动解耦的限定记忆区间循环最小二乘法(Limited memory interval cyclic least squares method based on disturbance decoupling,DCLS),用于机构全行程内非线性模型和扰动参数的精确辨识拟合。首先,介绍了机构的完整和简化的动力学模型,以及非线性参数难辨识的原因;然后,分析了CLS辨识法在辨识拟合非线性扰动参数的局限性,并通过基于动平衡的不平衡力矩分离测试方法提出了DCLS辨识法;最后,基于实验平台、激励信号和辨识环路,实现了机构行程范围内的非线性模型和扰动参数精确辨识。实验结果表明:DCLS辨识法辨识系统的速度和位移响应的均方根误差相比于CLS辨识法分别下降了47.6%和48.9%。DCLS辨识法可解决CLS辨识法辨识扰动参数时的互耦合问题,为电动缸举升伺服机构的高精度建模提供参考。

关键词: 电动缸举升机构, 扰动解耦, 记忆区间, 循环最小二乘法

Abstract: Aiming at the problem of inaccurate identification of nonlinear disturbance parameters in electric cylinder(EMA) lifting servo mechanisms using the limited memory interval cyclic least squares(CLS) method, a limited memory interval cyclic least squares method based on disturbance decoupling(DCLS) is proposed. Firstly, the complete and simplified dynamic model of the mechanism, as well as the reasons why nonlinear parameters are difficult to identify, are introduced. Then, the limitations of the CLS identification method in identifying and fitting nonlinear disturbance parameters are analyzed, and the DCLS identification method isproposed through the unbalanced torque separation testing method based on dynamic balance. Finally, based on the experimental platform, excitation signals, and identification loop, precise identification of nonlinear models and disturbance parameters within the mechanism's travel range is achieved. The experimental results show that the root means square errors of the speed and displacement responses identified by the DCLS identification method have decreased by 47.6% and 48.9% respectively compared to the CLS identification method. The DCLS identification method can solve the problem of mutual coupling when identifying disturbance parameters using the CLS identification method, and provide reference for high-precision modeling of EMA servo lifting mechanisms.

Key words: EMA lifting mechanism, disturbance decoupling, memory interval, cyclic least square method

中图分类号: