机械工程学报 ›› 2025, Vol. 61 ›› Issue (5): 138-152.doi: 10.3901/JME.2025.05.138
• 机器人及机构学 • 上一篇
杨廷力1, 李菊1, 罗玉峰2, 沈惠平1
收稿日期:
2024-03-04
修回日期:
2024-10-10
发布日期:
2025-04-15
作者简介:
杨廷力,男,1940年出生,高级工程师,教授,博士研究生导师。主要研究方向为机构学与机器人机构学。E-mail:yangtl@126.com;李菊(通信作者),女,1981年出生,副教授,硕士研究生导师。主要研究方向为并联机器人、机电一体化。E-mail:wangju0209@163.com;罗玉峰,男,1960年出生,教授,博士研究生导师。主要研究方向为机械系统理论,机构学,人工智能。E-mail:lyfyel@126.com;沈惠平,男,1965年出生,教授,博士研究生导师。主要研究方向为机构学与机器人机构学。E-mail:shp65@126.com
基金资助:
YANG Tingli1, LI Ju1, LUO Yufeng2, SHEN Huiping1
Received:
2024-03-04
Revised:
2024-10-10
Published:
2025-04-15
摘要: 一百多年来,相应于机械系统的发展,机构学先后提出了基于杆-副单元建模的、基于Assur杆组单元建模的、基于回路单元建模的,以及基于单开链单元建模的机构学的4种理论体系。近四十年来,以机器人机构发展为背景,又提出了基于螺旋理论的、基于速度空间的、基于位移子群/子流形的,以及基于方位特征集的机构拓扑学的4种系统理论。本文拟在哲学的方法论层次上,揭示机构学4种理论体系与机构拓扑学4种系统理论的深层次的某些规律性,如,理论体系的基本架构(基本问题-基本概念-基本原理-基本公式-设计方法);机构拓扑学、运动学与动力学研究的基本问题及其内在联系;多体约束系统的模式分析方法及其单元结构的层次性、对称性与有序性等;由非逻辑思维提出的基本问题、基本概念与基本原理是其原始创新之源,而由逻辑推理形成理论体系等;同时,进一步揭示构建不同的理论体系的某些规律性,如,不同理论体系源于由非逻辑思维提出的不同的基本问题、基本概念与基本原理;基本概念、基本公式及其运算规则与设计方法等不同层次之间的内在联系;机构学的内蕴性质;机构拓扑学是机构学成为一门独立学科的主要依据等。方法论的思考有助于促进机构学理论研究的深化和拓宽,以及与后续发展的共鸣。
中图分类号:
杨廷力, 李菊, 罗玉峰, 沈惠平. 现代机构学的构建与发展的方法论思考[J]. 机械工程学报, 2025, 61(5): 138-152.
YANG Tingli, LI Ju, LUO Yufeng, SHEN Huiping. Methodological Thinking on the Construction and Development of Advanced Mechanism Studies[J]. Journal of Mechanical Engineering, 2025, 61(5): 138-152.
[1] REULEAUX F. Theoretische kinematic[M]. Germany,1876. [2] FRANKE R. Vom aufbau der getriebe[M]. Berlin:Beuthvertrieb,1943. FRANKE R. Structure of gearboxes[M]. Berlin:Beuthvertrieb,1943. [3] BEYER R. The kinematic synthesis of mechanisms[M]. McGraw-hill Book Comp,1963. [4] HAIN K. Applied kinematics[M]. New York:McGraw-Hill,1967. [5] WOO L S. Type synthesis of plane linkages[J]. ASME Journal of Engineering for Industry,1967,89:159-172. [6] TISCHLER C,SAMUEL A,HUNT K H. Kinematic chains for robot hands—I. orderly number-synthesis[J]. Mechanism and Machine Theory,1995,30(8):1193-1215. [7] WITTENBURG J. Dynamics of systems of rigid bodies[M]. Stuttgart:Teubner,1977. [8] MRUTHYUNJAYA T S. Kinematic structure of mechanisms revisited[J]. Mechanism and Machine Theory,2003,38:279-320. [9] ASSUR L V. Investigation of plane hinged mechanisms with lower pairs from the point of view of their structure and classification:Part I,II[J]. Bull. Petrograd Polytech. Inst.,1913,20:329-386. [10] DOBROVOLSKII V V. Main principles of rational classification[M]. AS USSR,1939. [11] VERHO A. An extension of the concept of the group[J]. Mechanism and Machine Theory,1973,8(2):249-256. [12] MANOLESCU N I. A unified method for the formation of all planar jointed kinematic chains and Baranov trusses[J]. Environment and Planning B,1979,6(4):447-454. [13] GALLETTI C. A note on modular approaches to planar linkage kinematic analysis[J]. Mechanism and Machine Theory,1986,21(5):385-391. [14] FANGHELLA P. Kinematics of spatial linkages by group algebra:a structure-based approach[J]. Mechanism and Machine Theory,1988,23(3):171-183. [15] CERESOLE E,FANGHELLA P,GALLETTI C. Assur’s groups,AKCs,basic Trusses,SOCs,etc.:modular kinematics of planar linkages[C]// Proc. of 1996 ASME Design Engineering Technical Conf.,1996:96-DETC/MECH-1027. [16] SERVATIUS B,SHAI O,WHITELEY W. Combinatorial characterization of the Assur graphs from engineering[J]. European Journal of Combinatorics,2010,31(4):1091-1104. [17] NICOLAS R,FEDERICO T. On closed-form solutions to the position analysis of baranov trusses[J]. Mechanism and Machine Theory,2012,50:179-196. [18] SHAI O,SLJOKA A,WHITELEY W. Directed graphs,decompositions,and spatial rigidity[J]. Discrete Applied Mathematics,2013,161:3028-3047. [19] HAHN E,SHAI O. Construction of Baranov trusses using a single universal construction rule[C]// Proc. of the ASME International Design Engineering Technical Conf.,2016:IDETC/CIE 2016-59134. [20] DOBRJANSKYJ L,FREUDENSTEIN F. Some applications of graph theory to the structural analysis of mechanisms[J]. Jnl. Engineering for Industry,1967,89:153-158. [21] PAUL B. Kinematics and dynamics of planar machinery[M]. New Jersey:Prentice-Hall,Inc.,1979. [22] KINZEL G L,CHANG C H. The analysis of planar linkages using a modular approach[J]. Mechanism and Machine Theory,1984,19:165-172. [23] SOHN W J,FREUDENSTEIN F. An application of dual graphs to the automatic generation of the kinematic structure of mechanisms[J]. ASME J. of Mech. Trans. and Auto. in Design,1989,111(4):494-497. [24] TUTTLE E R,PETERSON S W,TITUS J E. Enumeration of basic kinematic chains using the theory of finite groups[J]. Trans. ASME J. of Mech. Trans. and Auto. in Design,1989,111(4):498-503. [25] WALDRON K J,SREENIVASAN S V. A study of the solvability of the position problem for multi-circuit mechanisms by way of example of the double butterfly linkage[J]. ASME J. of Mechanical Design,1996,118:390-395. [26] TSAI L W. Robot analysis:the mechanics of serial and parallel manipulators[M]. New York:John Wiley,1999. [27] MCCARTHY J M,SOH G S. Geometric design of linkages[M]. New York:Springer,2011. [28] 刘辛军,于靖军,孔宪文. 机器人机构学[M]. 北京:机械工业出版社,2021. LIU Xinjun,YU Jingjun,KONG Xianwen. Robot mechanism[M]. Beijing:China Machine Press,2021. [29] YANG T L. Structural analysis and number synthesis of spatial mechanisms[C]// Proc. of the Sixth World Congress on the Theory of Machine and Mechanisms,New Delhi,1983:280-283. [30] YANG T L. A method of kinematic analysis by arbitrarily prescribed input and to planar multi-loop chains[C]// Proc. of the 6th World Conf. on the Theory of Machine and Mmechanisms,New Delhi,1983:195-198. [31] YANG T L. Structural character of planar complex mechanisms and methods of kinematic and kinetostatic analysis by imaginary unknown parameters[C]// Proc. of the ASME Design Engineering Technical Conf.,1986:86-DET-180. [32] YANG T L,YAO F H. The topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms,part 1-theory,part 2-application//[C] Proc. of ASME Mechanisms Conf.,1988:179-190. [33] 杨廷力,李惠良,罗玉峰. 关于任意机械系统动力学方程的结构[J]. 机械工程学报,1991,27(4):1-15. YANG Tingli,LI Huiliang,LUO Yufeng. On the structure of dynamic equations of arbitrary mechanical systems[J]. Journal of Mechanical Engineering,1991,27(4):1-15. [34] YANG T L,YAO F H. The topological characteristics and automatic generation of structural analysis and synthesis of spatial mechanisms,part 1-topological characteristics of mechanical network; part 2-automatic generation of structure types of kinematic chains[C]// Proc. of ASME Mechanisms Conf.,DE-47,1992:179-190. [35] ZHANG J Q,YANG T L. A new method and automatic generation for dynamic analysis of complex planar mechanisms based on the SOC[C]// Proc. of 1994 ASME Mechanisms Conf.,1994:215-220. [36] 杨廷力. 机构学理论研究进展[J]. 机械工程学报,1995,31(2):1-25. YANG Tingli. Advances in mechanism theory[J]. Journal of Mechanical Engineering,1995,31(2):1-25. [37] 杨廷力. 机械系统基本理论--结构学,运动学,动力学[M]. 北京:机械工业出版社,1996. YANG Tingli. Basic theory of mechanical systems—structure,kinematics,dynamics[M]. Beijing:China Machine Press,1996. [38] KONG X W,YANG T L. A new method for displacement analysis of multi-loop spatial linkages based on ordered single-open-chains[C]//Proc. of the ASME Mechanisms Conf.,1996:96-DETC/MECH-1552. [39] YANG T L,YAO F H,ZHANG M,et al. A comparative study on some modular approaches for analysis and synthesis of planar linkages:part I—modular structural analysis and modular kinematic analysis[C]. Proc. of the ASME Mechanisms Conf.,1998:DETC98/MECH-5920. [40] YANG T L,YAO F H,ZHANG M,et al. A comparative study on some modular approaches for analysis and synthesis of planar linkages:part II—modular dynamic analysis and modular structural synthesis[C]// Proc. of the ASME Mechanisms Conf.,1998:DETC98/MECH-6058. [41] 刘安心,杨廷力. 机械系统运动学设计[M]. 北京:中国石化出版社,1999. LIU Anxin,YANG Tingli. Kinematic design of mechanical system[M]. Beijing:China Petrochemical Press,1999. [42] LIU A X,YANG T L. Finding all solutions to unconstrained nonlinear optimization for approximate synthesis of planar linkages using continuation method[J]. ASME J. of Mechanical Design,1999,121(3):368-374. [43] LIU A X,YANG T L. Real continuation method and its application in kinematic synthesis[C]// Proc. of the ASME Mechanisms Conference,2002:DETC2000/MECH - 14192. [44] 杨廷力,姚芳华. 多项式方程组的主项解耦消元法[J]. 数学的实践与认识,2002,32(6):1007-1015. YANG Tingli,YAO Fanghua. An elimination method with decoupling of leading terms for polynomial set[J]. Mathematics In Practice and Theory,2002,32(6):1007-1015. [45] SHEN H P,TING K L,YANG T L. Configuration analysis of complex multiloop linkages and manipulators[J]. Mechanism and Machine Theory,2000,35(3):353-362. [46] HANG L B,JIN Q,JIN J W,et al. A general study of the number of assembly configurations for multi-circuit planar linkages[J]. Journal of Southeast University,2000,16(1):46-51. [47] JIN Q,YANG T L. Over-constraint analysis on spatial 6-link loops[J]. Mechanism and Machine Theory,2002,37(3):267-278. [48] FENG Z Y,ZHANG C,YANG T L. Direct displacement solution of 4-DOF spatial parallel mechanism based on ordered single-open-chain[J]. Chinese Journal of Mechanical Engineering,2006,42(7),35-38. [49] SHI Z X,LUO Y F,YANG T L. Modular method for kinematic analysis of parallel manipulators based on ordered SOCs[C]// Proc. of the ASME 31st mechanisms and Robots Conf.,2006:DETC2006-99089. [50] SHI Z X,LUO Y F,HANG L B,et al. A simple method for inverse kinematic analysis of the general 6R serial robot[J]. ASME J. of Mechanical Design,2007,129(8):793-798. [51] 冯志友,张燕,杨廷力,等. 基于牛顿欧拉法的2UPS-2RPS并联机构的逆动力学分析[J]. 农业机械学报,2009,40(4):193- 197. FENG Zhiyou,ZHANG Yan,YANG Tingli,et al. Inverse dynamics analysis of 2UPS-2RPS parallel mechanism based on Newton Euler method[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(4):193-197. [52] 冯志友,何连才,杨廷力,等. 基于单开链单元的并联气液动连杆机构逆动力学分析[J]. 机械设计,2010(4):58-61. FENG Z Y,HE L C,YANG T L,et al. Inverse dynamics analysis of parallel gas-hydraulic linkage based on single open chain element [J]. Mechanical Design,2010(4):58-61. [53] SHEN H P,YANG T L,LI J,et al. Evaluation of topological properties of parallel manipulators based on the topological characteristic indexes[J]. Robotic,2020,38(8):1381- 1399. [54] SHEN H P,CHABLAT D,ZEN B,et al. A translational three-degrees-of-freedom parallel mechanism with partial motion decoupling and analytic direct kinematics[J]. Journal of Mechanisms and Robotics,2020,12:021112-1-7. [55] SHEN H P,ZHAO Y,LI J,et al. A novel partially-decoupled translational parallel manipulator with symbolic kinematics,singularity identification and workspace determination[J]. Mechanism and Machine Theory,2021,164:104388. [56] 沈惠平. 基于拓扑特征的机器人机构运动学[M]. 北京:高等教育出版社,2021. SHEN Huiping. Kinematics of robot mechanism based on topological features[M]. Beijing:Higher Education Press,2021. [57] FRISOLI A,CHECCACCI D,SALSEDO F,et al. Synthesis by screw algebra of translating in-parallel actuated mechanisms[M]. Dordrecht:Kluwer,2000. [58] HUANG Z,LI Q C. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J]. Int. J. Robotics Research,2002,21(2):131-145. [59] HUANG Z,LI Q C. Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method[J]. Int. J. Robotics,2003,22(1):59-79. [60] HUANG Z,LI Q C,DING H. Theory of parallel mechanisms [M]. Dordrecht:Springer,2012. [61] 黄真,刘婧芳,李艳文. 论机构自由度:寻找了150年的自由度通用公式[M],北京:科学出版社,2011. HUANG Zhen,LIU Jingfang,LI Yanwen. On the degree of freedom of mechanisms:searching for a general formula for degree of freedom for 150 years[M]. Beijing:Science Press,2011. [62] KONG X W,GOSSELIN C. Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory[J]. IEEE Trans. Rob. Autom.,2004,20(2):181-190. [63] KONG X W,GOSSELIN C. Type synthesis of parallel mechanisms[M]. Springer Tracts in Advanced Robotics,2007. [64] GOGU G. Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations[J]. Eur. J. Mech. A Solids,2004,23:1021-1039. [65] GOGU G. Mobility of mechanisms:a critical review[J]. Mech Mach Theory,2005,40:1068-1097. [66] GOGU G. Structural synthesis of parallel robots:part 1:methodology[M]. Springer,Dordrecht,2008. [67] GOGU G. Structural synthesis of parallel robots:part 2:translational topologies with two and three degrees of freedom[M]. Dordrecht:Springer,2009. [68] GOGU G. Structural synthesis of parallel robots:part 3:topologies with planar motion of the moving platform[M]. Springer,Dordrecht,2010. [69] GOGU G. Structural synthesis of parallel robots:part 4:other topologies with two and three degrees of freedom [M]. Dordrecht:Springer,2012. [70] HERVE J. Analyse structurelle des mécanismes par groupe des déplacements[J]. Mech Mach Theory,1978,13:437-450. HERVE J. Structural analysis of mechanisms by the groupe of displacements[J]. Mech Mach Theory,1978,13:437-450. [71] HERVE J. Design of parallel manipulators via the displacement group[C]// Proc. of the 9th World Congress on the Theory of Machines and Mechanisms:Milan,Italy,1995:2079-2082. [72] FANGHELLA P,GALLETTI C. Metric relations and displacement groups in mechanism and robot kinematics[J]. ASME Journal of Mechanical Design,1995,117:470-478. [73] HERVE J. The Lie group of rigid body displacements,a fundamental tool for mechanism design[J]. Mech Mach Theory,1999,34:719-730. [74] LI Q C,HUANG Z,HERVE J. Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements[J]. IEEE Trans. Rob. Autom.,2004,20:173-180. [75] RICO J,AGUILERA L,GALLARDO J,et al. A more general mobility criterion for parallel platforms [J]. ASME Journal of Mechanical Design,128:207-219,2006. [76] SÁ NCHEZ-GARCIÁ A J,RICO J M,CERVANTES-SÁNCHEZ J J. A mobility determination method for parallel platforms based on the Lie algebra of SE(3) and its subspaces[J]. Journal of Mechanisms and Robotics,2021,13:031015-1-11. [77] MENG J,LIU G F,LI Z X. A geometric theory for analysis and synthesis of sub-6 DOF parallel manipulators[J]. IEEE Trans. Rob.,2007,23:625-649. [78] LI Q,HERVE J,YE W. Geometric method for type synthesis of parallel manipulators[M]. Springer,2020. [79] 杨廷力,金琼,刘安心,等. 基于单开链单元的欠秩并联机器人机构型综合的一般方法[J]. 机械科学与技术,2001,20(3):321-325. YANG Tingli,JIN Qiong,LIU Anxin,et al. General method for mechanism type synthesis of under-rank parallel robot based on single open chain element[J]. Mechanical Science and Technology,2001,20(3):321-325. [80] 杨廷力,金琼,刘安心,等,基于单开链单元的三平移并联机器人机构型综合及其分类[J]. 机械工程学报,2002,38(8):31-36. YANG Tingli,JIN Qiong,LIU Anxin,et al. Mechanism type synthesis and classification of three-translation parallel robot based on single open chain element[J]. Journal of Mechanical Engineering,2002,38(8):31-36. [81] JIN Q,YANG T L. Theory for topology synthesis of parallel manipulators and its application to three dimension translation parallel manipulators[J]. Transactions of the ASME J. of Mechanical Design,2004,126:625-639. [82] JIN Q,YANG T L. Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators[J]. ASME J. of Mechanical Design,2004,126:301-306. [83] 杨廷力. 机器人机构拓扑结构学[M]. 北京:机械工业出版社,2004. YANG Tingli. Topological structure of robot mechanism[M]. Beijing:China Machine Press,2004. [84] YANG T L,LIU A X,LUO Y F,et al. Position and orientation characteristic equation for topological design of robot mechanisms[J]. ASME Journal of Mechanical Design,2009,131:021001-1-17. [85] YANG T L,SUN D J. A general DOF formula for parallel mechanisms and multi-loop spatial mechanisms[J]. ASME Journal of Mechanisms and Robotics,2012,4(1):011001-1-17. [86] 杨廷力,刘安心,罗玉峰,等. 机器人机构拓扑结构设计[M]. 北京:科学出版社,2012. YANG Tingli,LIU Anxin,LUO Yufeng,et al. Topology design of robot mechanism[M]. Beijing:Science Press,2012. [87] YANG T L,LIU A X,SHEN H P,et al. On the correctness and strictness of the POC equation for topological structure design of robot mechanisms[J]. ASME Journal of Mechanisms and Robotics,2013,5(2):021009-1-18. [88] SHEN C W,HANG L B,YANG T L. Position and orientation characteristics of robot mechanisms based on geometric algebra[J]. Mechanism and Machine Theory,2017(108):231-243. [89] YANG T L,LIU A X,SHEN H P,et al. Composition principle based on single open chain unit for general spatial mechanisms and its application—in conjunction with a review of development of mechanism composition principles[J]. ASME Journal of Mechanisms and Robotics,2018,10:051005-1-16. [90] YANG T L,LIU A X,SHEN H P,et al. Topology design of robot mechanisms[M]. Singapore:Springer,2018. [91] 杨廷力,沈惠平,刘安心,等. 机构拓扑学理论的基本思想与数学方法—从方法论角度回顾几种原创性理论与方法[J]. 机械工程学报,2020,56(3):1-15. YANG Tingli,SHEN Huiping,LIU Anxin,et al. The basic ideas and mathematical methods of institutional topology theory:a review of several original theories and methods from the perspective of methodology[J]. Journal of Mechanical Engineering,2020,56(3):1-15. [92] SHEN H P,YANG T L,LI J,et al. Evaluation of topological properties of parallel manipulators based on the topological characteristic indexes[J]. Robotic,2020,38(8):1381- 1399. [93] LI J,WU G L,SHEN H P,et al. Topology of robotic mechanisms:framework and mathematics methods—in conjunction with a review of four original theories[J]. Mechanism and Machine Theory,2022(175):1-25. [94] 杨廷力. 机器人机构拓扑学及其创建历程[M]. 北京:高等教育出版社,2022. YANG Tingli. Topology of robot mechanism and its creation process[M]. Beijing:Higher Education Press,2022. [95] 沈惠平,李菊,朱小蓉,等. 基于最优路径的并联机构自由度计算方法及其新公式[J]. 机械工程学报,2024,60(19):40-52. SHEN Huiping,LI Ju,ZHU Xiaorong,et al. New method and formula for degree-of-freedom calculation of parallel mechanism based on optimal paths[J]. Journal of Mechanical Engineering,2024,60(19):40-52. |
[1] | 魏齐, 陶建峰, 孙浩, 徐爽, 刘成良. 基于代理模型的含摩擦机构动力学快速求解方法[J]. 机械工程学报, 2025, 61(4): 323-332. |
[2] | 王晨飞, 王晓力, 郑辰. 超高速空气动静压轴承-转子系统不平衡量在线识别研究[J]. 机械工程学报, 2025, 61(3): 337-346. |
[3] | 范小东, 史创, 王治易, 刘天明, 郭宏伟, 刘荣强. 固面可展开天线机构设计及运动学分析[J]. 机械工程学报, 2025, 61(3): 237-250. |
[4] | 史江海, 冯鑫, 曹宏瑞. 高转速效应下空气静压主轴微铣削加工表面形貌预测研究[J]. 机械工程学报, 2025, 61(3): 259-271. |
[5] | 梁相龙, 姚志凯, 邓文翔, 姚建勇. 六自由度液压机械臂运动学标定和逆解研究[J]. 机械工程学报, 2025, 61(2): 346-357. |
[6] | 申志康, 李冬晓, 孙中刚, 马良超, 刘小超, 田艳红, 郭伟, 侯文涛, 朴钟宇, 杨新岐, 李文亚. 搅拌摩擦沉积增材制造机理及展望:机遇与挑战[J]. 机械工程学报, 2025, 61(2): 56-85. |
[7] | 张宇, 汪田鸿, 金滔, 林杨乔, 李龙, 田应仲, 罗均, 张泉. 空间连续体机械臂运动学分析与末端控制方法[J]. 机械工程学报, 2025, 61(1): 13-29. |
[8] | 刘瑞伟, 张碧峰, 范雅婷, 温兆麟, 肖体兵, 郭宏伟. 索-梁-膜张拉式天线展开机构非线性动力学特性及参数优化分析[J]. 机械工程学报, 2025, 61(1): 92-100. |
[9] | 刘程果, 合烨, 陈小安, 王光建. 基于节律动态运动基元与机器人动力学的多空间融合周期性变阻抗技能学习[J]. 机械工程学报, 2025, 61(1): 150-161. |
[10] | 吴杰, 虞志浩. 一种数值雅可比隐式积分方法在旋翼动力学中的评估与应用[J]. 机械工程学报, 2025, 61(1): 162-171. |
[11] | 崔歆, 李长河, 张彦彬, 杨敏, 周宗明, 刘波, 王春锦. 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60(9): 323-337. |
[12] | 张行, 富宽, 陈铭浩, 李睿, 石新娜. 压差式多节串联管道机器人越障时动力学演化规律及减振分析[J]. 机械工程学报, 2024, 60(8): 348-359. |
[13] | 杨晓航, 赵智远, 李云涛, 徐梓淳, 赵京东. 基于可操作度优化的冗余机械臂逆运动学求解方法[J]. 机械工程学报, 2024, 60(7): 22-33. |
[14] | 畅博彦, 韩芳孝, 周杨, 金国光. 面向精梳任务的高速变胞机构冲击动力学研究[J]. 机械工程学报, 2024, 60(7): 54-65. |
[15] | 张俊, 吴成阳, 方汉良, 孙载超, 王凯龙, 汤腾飞. Z4型冗余驱动并联操作器的驱动特性研究[J]. 机械工程学报, 2024, 60(7): 66-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||