• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (4): 302-313.doi: 10.3901/JME.2025.04.302

• 交叉与前沿 • 上一篇    

扫码分享

人-信息-物理协同下核电设备可演进式剩余寿命估计

蒋翔宇1, 冯毅雄1,2, 张志峰1, 宋秀菊1, 洪兆溪1,3, 胡炳涛1, 谭建荣1   

  1. 1. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027;
    2. 贵州大学省部共建公共大数据国家重点实验室 贵阳 550025;
    3. 浙江大学宁波科创中心 宁波 315100
  • 收稿日期:2024-05-09 修回日期:2024-10-23 发布日期:2025-04-14
  • 作者简介:蒋翔宇,女,1997年出生,博士研究生。主要研究方向为复杂装备寿命预测与健康管理等。E-mail:11925071@zju.edu.cn
    冯毅雄(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为现代设计理论与方法等。E-mail:fyxtv@zju.edu.cn
    张志峰,男,1991年出生,博士研究生。主要研究方向为绿色设计理论与智能调度等。E-mail:zhzhfeng@zju.edu.cn
    宋秀菊,女,1989年出生,博士,研究员,博士研究生导师。主要研究方向为材料结构设计驱动的高性能器件制造等。E-mail:songxiuju@zju.edu.cn
    洪兆溪,女,1990年出生,博士,助理研究员。主要研究方向为智能设计与不确定性优化决策。E-mail:hzhx@zju.edu.cn
    胡炳涛,男,1992年出生,博士,副研究员。主要研究方向为产品设计理论与智能制造。E-mail:hubingtao@zju.edu.cn
    谭建荣,男,1954年出生,博士,教授,博士研究生导师,中国工程院院士。主要研究方向为CAX方法学、工程图学、企业信息化。E-mail:egi@zju.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3402000)、浙江省重点研发计划(2024C01207)和国家自然科学基金(52105281,52205288)资助项目。

Evolvable Remaining Useful Life Estimation of Nuclear Power Equipment Under Human-cyber-physical Collaboration

JIANG Xiangyu1, FENG Yixiong1,2, ZHANG Zhifeng1, SONG Xiuju1, HONG Zhaoxi1,3, HU Bingtao1, TAN Jianrong1   

  1. 1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027;
    2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025;
    3. Ningbo Innovation Center, Zhejiang University, Ningbo 315100
  • Received:2024-05-09 Revised:2024-10-23 Published:2025-04-14

摘要: 在工业5.0新时代,将设备物理实体与人类认知、信息技术融合,是推动故障预测与健康管理(Prognostics and health management, PHM)智能增强的重要途径,剩余寿命估计作为PHM中的关键环节,为设备预测性维护提供时间裕量依据。受人的记忆和遗忘机制启发,提出一种人-信息-物理协同的剩余寿命估计可演进式模型框架,能够同时预测设备的连续状态和离散状态。模型采用基于实例的学习策略从时序数据中汲取并保留知识,无须事先假设固定的失效阈值和退化阶段,旨在随着样本的加入而逐渐调整趋于稳定,适合于设备小样本和先验知识不足的情况,或设备处于变化的运行环境中。模型底层采用核最小均方算法,使模型结构和参数可以在线更新;基于最近实例质心估计方法改进算法,将输入空间拓展为特征空间,随着输入数据的学习将空间自动划分为不同子区域,以实现在预测未来信号的同时获取健康状态信息,进而推导剩余寿命。为了使模型网络规模更加紧凑,引入在线矢量量化方法,通过消除模型冗余的基函数降低计算复杂度。将所提模型框架运用于某压水堆给水泵剩余寿命估计,验证了方法的有效性。

关键词: 人-信息-物理协同, 剩余寿命, 同步预测, 核最小方均

Abstract: In the new era of Industry 5.0, the integration of physical entities of equipment with human cognition and information technology is an important way to promote the intelligent of prognostics and health management(PHM). The estimation of residual life is a key link in PHM. It is the basis for the predictive maintenance of equipment. Inspired by the human memory and forgetting mechanism, an evolvable model framework of human-cyber-physical collaboration for remaining useful life estimation is proposed, which can simultaneously predict the continuous state and discrete state of the equipment. The model adopts instance-based learning to absorb and retain knowledge from time series data without assuming a fixed failure threshold and degradation stage in advance. The model aims to gradually adjust and become stable with incremental samples, which is suitable for the equipment with small-scale samples and insufficient prior knowledge, or the equipment in a changing operating environment. The kernel least mean square (KLMS) algorithm is used adapted as the underlying algorithm so that the model structure and parameters could be updated online. After KLMS expands the input space into a feature space, the nearest-instance centroid estimation(NICE) is used to improve it by automatically dividing the feature space into different sub-regions with the input data learning, to realize the prediction of future signals and obtain health status information at the same time. Then the remaining useful life is derived. In order to make the model network more compact, the online modified vector quantization(M-VQ) method is introduced to reduce the computational complexity by eliminating redundant basis functions of the model. The proposed model framework is applied to estimate the remaining life of the feed pump in a pressurized water reactor, and the effectiveness of the method is verified.

Key words: human-cyber-physical collaboration, remaining useful life, synchronous prediction, kernel least mean square

中图分类号: