• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 163-176.doi: 10.3901/JME.2024.24.163

• 材料科学与工程 • 上一篇    下一篇

扫码分享

电弧侵蚀过程Ag/Ti2SnC复合电触头材料纳米力学退化行为及其机理

魏鑫鹏1, 吴雪莲1,2, 吴宬哲1, 孙万杰1, 丁健翔1,2,3, 柏小平4, 柳东明1, 张世宏2, 任万滨5, 孙正明1,3   

  1. 1. 安徽工业大学材料科学与工程学院 马鞍山 243032;
    2. 安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002;
    3. 东南大学材料科学与工程学院 南京 211189;
    4. 浙江福达合金材料科技有限公司 温州 325025;
    5. 哈尔滨工业大学电气工程及自动化学院 哈尔滨 150001
  • 收稿日期:2024-01-08 修回日期:2024-07-25 出版日期:2024-12-20 发布日期:2025-02-01
  • 作者简介:魏鑫鹏,男,1999年出生。主要研究方向低压电器用金属陶瓷复合电接触材料。E-mail:xpweil@163.com;吴雪莲,女,1989年出生,博士,博士后。主要研究方向为金属陶瓷复合功能材料。E-mail:xlwu2022@ahut.edu.cn;丁健翔(通信作者),男,1987年出生,博士,副教授,硕士研究生导师。主要研究方向为环保新型电功能陶瓷增强金属基、高分子基复合材料在电力电器领域的开发应用。E-mail:jxding@ahut.edu.cn;张世宏:男,1981年出生,博士,教授,博士研究生导师。主要研究方向为金属表面科学与技术。E-mail:shzhang@ahut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12072294)。

Nano-mechanical Degradation Behavior and Mechanism of Ag/Ti2SnC Composite Electrical Contact Materials During Arc Erosion

WEI Xinpeng1, WU Xuelian1,2, WU Chengzhe1, SUN Wanjie1, DING Jianxiang1,2,3, BAI Xiaoping4, LIU Dongming1, ZHANG Shihong2, REN Wanbin5, SUN Zhengming1,3   

  1. 1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032;
    2. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002;
    3. School of Materials Science and Engineering, Southeast University, Nanjing 211189;
    4. Zhejiang Fudar Alloy Materials Technology Co., Ltd., Wenzhou 325025;
    5. School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001
  • Received:2024-01-08 Revised:2024-07-25 Online:2024-12-20 Published:2025-02-01

摘要: 银基电触头是承载低压电器设备结构-功能一体化的关键材料,在实际服役过程中“材料组成-力学特性”的维持是抵抗电弧侵蚀进而避免电触头过早失效的关键。阐明材料在电弧侵蚀过程中纳米力学性能的演变规律,对于丰富电接触机理、开发新型电接触材料进而推动低压电器更新换代具有重要意义。设计了经不同次数电弧侵蚀的Ag/Ti2SnC电触头材料样品,并采用纳米压痕技术 (静态压痕、蠕变、连续刚度、NanoBlitz 3D压痕)对其断面近电弧侵蚀区域纳米力学性能进行了系统分析。研究发现,尽管随电弧侵蚀次数增加材料纳米力学性能逐渐退化,但退化速度呈明显减缓趋势。在侵蚀初期(1~100次)和中期 (100~1000次),力学性能下降主要归因于增强相Ti2SnC的部分分解和有限表面氧化。而在侵蚀后期(1 000~6 200次),即使电弧破坏由表及里深入了Ti2SnC内部,但表面氧化层的存在和Ag-Sn互扩散行为有效延缓了力学性能的退化速率,从而使Ag/Ti2SnC仍保持了较好的抗电弧侵蚀能力。从纳米力学角度深入剖析了Ag/Ti2SnC复合电触头材料的抗电弧侵蚀性能及其机制,为该体系材料的持续设计和优化提供了理论参考。

关键词: MAX相, 银基复合电触头, 纳米力学行为, 材料微结构, 电弧侵蚀机理

Abstract: Silver-based electrical contact is a key material for structural-functional integration of low-voltage electrical equipment. In the actual service process, the maintenance of material composition-mechanical properties is the key to resist arc erosion and avoid premature failure of electrical contact materials. Therefore, elucidation of the degradation law of nano-mechanical properties at different arc erosion stages can further enrich the mechanism of electrical contact, which is of great significance for developing new electrical contact materials and advancing the innovation of low-voltage switch materials. In this study, Ag/Ti2SnC electrical contact material samples with different arc erosion times were designed, and nanoindentation techniques (static indentation, creep, continuous stiffness, NanoBlitz 3D indentation)were used to systematically analyze the nanomechanical properties of the section near the arc erosion area. Our results indicated a gradual degradation in the nano-mechanical properties of the samples with increasing arc erosion times, although the rate of this degradation appeared to decelerate over arc erosion times. During the early (1100 times)and intermediate (1001000 times)stages of arc erosion, the decline in the nano-mechanical properties was primarily due to the decomposition of Ti2SnC and limited surface oxidation. During the later stages of arc erosion (10006200 times), even though Ti2SnC damage from the surface to the inside, the formation of a surface oxidation layer and Ag-Sn interdiffusion behavior effectively slowed the mechanical property degradation, enabling Ag/Ti2SnC to maintain good arc erosion resistance. This study delivers an insightful nano-mechanical perspective on the arc erosion resistance of Ag/Ti2SnC electrical composite contact materials, providing a solid theoretical base for future material system continued design and optimization.

Key words: MAX phase, silver-based composite electrical contact, nano-mechanical behavior, material microstructure, arc erosion mechanism

中图分类号: