• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (19): 356-366.doi: 10.3901/JME.2024.19.356

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

激光熔化沉积TiC/TC4功能梯度材料微观组织与拉伸性能研究

张家豪1, 王磊磊1, 张彦霄1, 黎一帆1, 王晓明2, 占小红1   

  1. 1. 南京航空航天大学材料科学与技术学院 南京 211106;
    2. 陆军装甲兵学院装备再制造技术国防科技重点实验室 北京 100072
  • 收稿日期:2023-11-01 修回日期:2024-03-09 出版日期:2024-10-05 发布日期:2024-11-27
  • 作者简介:张家豪,男,1998年出生,博士研究生。主要研究方向为激光焊接与精准再制造。E-mail:zhangjiahao@nuaa.edu.cn;占小红(通信作者),男,1979年出生,博士,教授,博士生导师。主要研究方向为激光焊接与精准再制造。E-mail:xiaohongzhan_nuaa@126.com
  • 基金资助:
    民用航天技术预先研究资助项目(D020304)。

Study on the Microstructure and Tensile Properties of TiC/TC4 Functionally Gradient Materials by Laser Melting Deposition

ZHANG Jiahao1, WANG Leilei1, ZHANG Yanxiao1, LI Yifan1, WANG Xiaoming2, ZHAN Xiaohong1   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106;
    2. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072
  • Received:2023-11-01 Revised:2024-03-09 Online:2024-10-05 Published:2024-11-27

摘要: 功能梯度材料(Functionally graded material,FGM)具有定制的化学成分或微观结构,使其能满足多维苛刻环境下的服役需求,可应用于航天零部件、发动机涡轮叶片等零部件。激光熔化沉积工艺(Laser melting deposition,LMD)通过粉末供给进行逐层熔化凝固制造,是一种动态混合多种材料从而改变三维体积内微观结构的新方法。基于LMD工艺制备TiC陶瓷和TC4钛合金功能梯度材料,并采用扫描电镜、电子背散射衍射和拉伸试验对微观组织和力学性能进行表征。结果表明:不同梯度层的物相组成均为TiC、α-Ti和β-Ti,物相种类随TiC含量变化不大。FGM从顶部至底部TiC的形态依次为粗大的枝状晶+未熔TiC、颗粒状初生TiC+不发达枝状晶、链状TiC+颗粒状TiC+短棒TiC。随着梯度的增加,FGM的强度先变高再变低,而断后伸长率一直呈下降趋势,裂纹优先在枝状晶和未溶TiC相中形成并扩展。原位生成的TiC对提高材料强度具有更大的贡献,强化机制以细晶强化和载荷传递强化为主。

关键词: 功能梯度材料, 激光熔化沉积, 金属/陶瓷, 微观组织, 力学性能

Abstract: Functionally graded material (FGM), which have customized chemical composition or microstructure, are capable of meeting the service requirements in multidimensional harsh environments.Therefore, it can be applied in components such as aerospace parts and engine turbine blades.The laser melting deposition (LMD) process, which uses powder feed to melt and solidify layer by layer, is a novel method to dynamically mix multiple materials and change the microstructure within the three-dimensional volume.TiC / TC4 FGM were prepared using the LMD process, and the microstructure and mechanical properties were characterized using scanning electron microscopy, electron backscatter diffraction, and tensile tests.The results shows that the phase compositions of different gradient layers were TiC, α-Ti, and β-Ti, and the types of phases did not change significantly with the TiC content.The morphology of TiC in the FGM changes from coarse dendritic crystals + unmelted TiC at the top to granular nascent TiC + undeveloped dendritic crystals, chain-like TiC + granular-like TiC + rod-like TiC at the bottom.With the increase in gradient, the strength of the FGM initially increases and then decreases, while the elongation at fracture continuously decreases.Cracks preferentially form and propagate in the dendritic grains and undissolved TiC phases.The in-situ TiC makes a greater contribution to improving the strength of the material, and the strengthening mechanisms are mainly grain boundary strengthening and load transfer strengthening.

Key words: functional gradient material, laser melting deposition, metal/ceramic, microstructure, mechanical property

中图分类号: