[1] 张金良,贾凡. 中国火电行业多模型碳达峰情景预测[J]. 电力建设,2022,43(5):18-28. ZHANG Jinliang,JIA Fan. Multi-model carbon peak scenario prediction for thermal power industry in China[J]. Electric Power Construction,2022,43(5):18-28. [2] NONAKA I. Some issues in creep-fatigue research[J]. Strength Fracture and Complexity,2021,13(4):163-175. [3] ZHAO Lei,XU Lianyong,HAN Yongdian,et al. Modelling creep-fatigue behaviours using a modified combined kinematic and isotropic hardening model considering the damage accumulation[J]. International Journal of Mechanical Sciences,2019,161-162:105016. [4] HOLDSWORTH S. Creep-fatigue failure diagnosis[J]. Materials,2015,8(11):7757-7769. [5] 葛仁跃. 基于损伤演化机理的P92钢蠕变-疲劳试验研究[D]. 杭州:浙江工业大学,2020. GE Renyue. Microstructure and high-temperature creep analysis of P92 steel[D]. Hangzhou:Zhejiang University of Technology,2020. [6] ZHANG Wei,WANG Xiaowei,CHEN Haofeng,et al. Microstructural damage mechanics-based model for creep fracture of 9%Cr steel under prior fatigue loading[J]. Theoretical and Applied Fracture Mechanics,2019,103:102269. [7] ZHANG Wei,ZHANG Tianyu,WANG Xiaowei,et al. The correlation between prior fatigue damage and remaining creep properties in a high chromium steel welded joint[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2020,790:139717. [8] 张勇. GH4169高温低周疲劳和蠕变疲劳交互行为研究[D]. 天津:天津大学,2016. ZHANG Yong. Low cycle fatigue and creep-fatigue interaction behavior of nickel based superalloy of GH4169 at elevated temperature[D]. Tianjin:Tianjin University,2016. [9] ZHAO ZiZhen,CHEN Xu. Effect of cyclic softening and stress relaxation on fatigue behavior of 2.25Cr1Mo0.25V steel under strain-controlled fatigue-creep interaction at 728 K[J]. International Journal of Fatigue,2020,140:105848. [10] FOURNIER B,SAUZAY M,CAES C,et al. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part 1:Effect of tensile holding period on fatigue lifetime[J]. International Journal of Fatigue,2008,30(4):649-662. [11] TAHIR F,LIU Yongming. A new experimental testing method for investigation of creep dominant creep-fatigue interaction in Alloy 617 at 950℃[J]. International Journal of Pressure Vessels and Piping,2017,154:75-82. [12] ZHANG Tianyu,WANG Xiaowei,JI Yunan,et al. Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings[J]. International Journal of Fatigue,2021,151:106357. [13] RORDRIGUEZ-IBABE J,MARTIN-MEIZOSO A,MARTINEZ-ESNAOLA J,et al. A mechanistic approach to the life prediction of 316L stainless steel under combined creep/fatigue cycling[J]. Materials Science and Engineering:A,1995,194(1):25-33. [14] YADAV D,TAHAWY M,KALACSKA S,et al. Characterizing dislocation configurations and their evolution during creep of a new 12% Cr steel[J]. Materials Characterization,2017,134:387-397 [15] 王润梓,廖鼎,张显程,等. 高温结构蠕变疲劳寿命设计方法:从材料到结构[J]. 机械工程学报,2021,57(16):66-86,105. WANG Runzi,LIAO Ding,ZHANG Xiancheng,et al. Creep-fatigue life design methods in high-temperature structures:From materials to components[J]. Journal of Mechanical Engineering,2021,57(16):66-86,105. [16] SONG Kai,ZHAO Lei,XU Lianyong,et al. A modified energy model including mean stress and creep threshold stress effect for creep-fatigue life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures,2022,45(5):1299-1316. [17] FELTHAM P. Creep and stress relaxation in alpha-brass at low temperatures[J]. Philosophical Magazine,1961,6(62):259-270. [18] WANG Runzi,ZHANG Xiancheng,TU Shantung,et al. A modified strain energy density exhaustion model for creep-fatigue life prediction[J]. International Journal of Fatigue,2016,90:12-22. [19] MAO Jianfeng,LI Xiangyang,WANG Dasheng,et al. Experimental study on creep-fatigue behaviors of Chinese P92 steel with consideration of several important factors[J]. International Journal of Fatigue,2021,142:105900. |