• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (15): 420-436.doi: 10.3901/JME.2024.15.420

• 制造工艺与装备 • 上一篇    

扫码分享

电场驱动微尺度3D打印掩膜电解加工微结构

彭子龙1,2, 吴金印1,2, 王萌杰1,2, 李一楠1,2, 兰红波1,2   

  1. 1. 青岛理工大学山东省增材制造工程研究中心 青岛 266520;
    2. 青岛理工大学山东省增材制造(3D打印)技术与应用高校重点实验室 青岛 266520
  • 收稿日期:2023-08-09 修回日期:2024-01-14 出版日期:2024-08-05 发布日期:2024-09-24
  • 作者简介:彭子龙(通信作者),男,1979年出生,教授,博士研究生导师。主要研究方向为特种加工技术、微纳3D打印技术。E-mail:pengzilong@qut.edu.cn
    吴金印,男,1998年出生,硕士研究生。主要研究方向为微细电化学加工技术。E-mail:wujinyin1215@163.com
  • 基金资助:
    国家自然科学基金(51875300,51871128)、山东省自然科学基金重大基础研究(ZR2020ZD04)和山东省自然科学基金(ZR2023ME194,R2018MEE017)资助项目。

Electric Field Driving Micro-scale 3D Printing Mask Electrochemical Machining Microstructure

PENG Zilong1,2, WU Jinyin1,2, WANG Mengjie1,2, LI Yinan1,2, LAN Hongbo1,2   

  1. 1. Shandong Engineering Research Center of Additive Manufacturing, Qingdao University of Technology, Qingdao 266520;
    2. Shandong Provincial Key Laboratory of Additive Manufacturing (3D Printing) Technology and Application, Qingdao University of Technology, Qingdao 266520
  • Received:2023-08-09 Revised:2024-01-14 Online:2024-08-05 Published:2024-09-24

摘要: 针对目前掩膜微细电解加工掩膜制作工艺复杂、微结构加工精度差等问题,提出电场驱动微尺度3D打印掩膜与阴极振动脉冲电解加工新方法。充分利用微尺度3D打印高分辨率、掩膜灵活性的优势,实现聚乳酸(PLA)材料微米级掩膜的精确打印,结合阴极振动进给与脉冲电压同步控制的电解加工工艺,取得了较好的加工效果。研究微尺度3D打印掩膜工艺规律,建立了阴极振动与脉冲同步电解加工模型,仿真分析间隙动态变化条件下的电流密度分布规律及微沟槽轮廓成形规律。开展了系统的工艺实验,得到主要工艺参数对微沟槽形貌轮廓、加工精度以及微槽深度与宽度方向蚀除量的影响规律。利用优化的工艺参数,在304不锈钢材料上稳定加工出平均深度为42.66μm、平均宽度为218.72 μm的平面线圈微沟槽结构,深度和宽度方向的标准偏差分别为1.23 μm和4.66 μm,表面粗糙度范围为0.758~0.881 μm;在50 μm厚不锈钢薄片上加工出平均宽度为236.48 μm,入口与出口差值为9.14 μm微缝结构的平面线圈,获得了加工一致性好、截面精度高的加工样件。该方法为电解加工微结构提供了一种有效的解决方案。

关键词: 微尺度3D打印, 掩膜制作, 掩膜电解加工, 微结构

Abstract: A new method of electric field-driven microscale 3D printing mask and cathode vibration pulse electrolytic processing was proposed to address the issues of complex mask microfabrication process and poor microstructure processing accuracy. This method can fully utilize the benefits of high resolution and flexibility of microscale 3D printing to achieve the accurate printing of micron-level masks of PLA material, combining with the electrolytic processing and cathode vibration pulse, the method produced successful processing outcomes. The current density distribution and microgroove profile formation law with dynamic changes of processing gap are simulated and studied using a cathodic vibration and pulse synchronous electrolytic processing model. A number of experiments are conducted to analyze the influence of the micro 3D printing in masking process, the main process parameters on the microgroove profile, processing accuracy, and the amount of etching in the depth and width of the microgroove. Using the optimized process parameters, a planar coil micro-groove structure with an average depth and width of 42.66 mm and 218.72 mm is successfully obtained on 304 stainless steel materials. The standard deviations are 1.23 mm and 4.66 mm respectively, as well as surface roughness ranging from 0.758 to 0.881 mm. Moreover, a planar coil micro-seam structure with an average width of 236.48 μm and a difference of 9.14 μm between the entrance and exit has been obtained on stainless steel sheet with 50 μm thickness. Results show that the machined samples with good processing consistency and high cross-sectional accuracy, which proposed a processing solution for the electrolytic processing of microstructures.

Key words: microscale 3D printing, mask making, mask electrochemical machining, microstructure

中图分类号: