• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (14): 317-328.doi: 10.3901/JME.2024.14.317

• 可再生能源与工程热物理 • 上一篇    下一篇

扫码分享

燃料电池质子交换膜表面微结构热压工艺热力耦合特性研究

柯育智1, 袁伟1, 张少鹏1, 周飞鲲2, 鲁亮3, 汤勇1   

  1. 1. 华南理工大学机械与汽车工程学院 广州 510640;
    2. 佛山科学技术学院机电工程与自动化学院 佛山 528225;
    3. 广东云韬氢能科技有限公司 广州 510440
  • 收稿日期:2024-01-11 修回日期:2024-05-20 出版日期:2024-07-20 发布日期:2024-08-29
  • 作者简介:柯育智,男,1991年出生,博士研究生。主要研究方向为燃料电池结构设计与制造。E-mail:2291748218@qq.com;袁伟(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为面向新能源和储能的先进制造技术及装备。E-mail:mewyuan@scut.edu.cn
  • 基金资助:
    国家自然科学基金联合基金重点(U22A20193)和广东省自然科学基金粤佛联合基金(2021B1515120031)资助项目。

Study on Thermo-mechanical Coupling Characteristics of Hot Pressing on Surface Microstructures of Proton Exchange Membrane for Fuel Cells

KE Yuzhi1, YUAN Wei1, ZHANG Shaopeng1, ZHOU Feikun2, LU Liang3, TANG Yong1   

  1. 1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640;
    2. School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225;
    3. Guangdong Yuntao Hydrogen Energy Technology Co., Ltd., Guangzhou 510440
  • Received:2024-01-11 Revised:2024-05-20 Online:2024-07-20 Published:2024-08-29

摘要: 质子交换膜是燃料电池内部传导氢质子的核心功能元件,传统二维光滑膜表面存在质子传输性能差、三相反应界面小等问题。构建膜表面功能微结构是发展高性能燃料电池的潜在途径。为揭示质子交换膜微热压制造结构成型过程中的热-力耦合作用机制,研究质子交换膜在不同温度及应力作用下的弹塑性及黏弹力学性能,构建并验证质子交换膜的黏弹本构模型,揭示质子交换膜表面结构微热压制造过程中的成型机制。研究结果表明在相同拉应力作用下,提高膜的温度,质子交换膜的弹性变形区间减小,塑性变形区间延长。温度升高,膜的弹性应变占比降低,黏性应变占比提高。此外,热-力耦合条件的变化引起质子交换膜内部的分子链内在取向改变,从而改变膜的黏弹力学性能。最后通过多因素权重因子分析得到压应力、热压温度和热压时间的权重因子值。研究表明选择合适的制造温度和应力有助于实现质子交换膜表面结构的高性能制造。

关键词: 燃料电池, 质子交换膜, 微热压, 热力耦合, 本构模型

Abstract: Proton exchange membrane(PEM) is the core functional component of H+ transportation at the anode and cathode of fuel cells. The traditional smooth membrane surface has issues such as poor proton transportation and small three-phase reaction interface. Constructing functional microstructures on the membrane surface is a promising strategy to develop high-performance fuel cells. To explore the thermo-mechanical coupling mechanism during the manufacturing process of micro hot embossing, the elastic-plastic and viscoelastic mechanical properties of proton exchange membranes(PEMs) under different temperatures and stresses are investigated in this study. Based on these experimental data, a viscoelastic constitutive model of PEM is constructed and demonstrated. The manufacturing mechanism and rheological behavior of PEMs during the micro hot pressing is revealed. The results show that the elastic deformation range of a PEM decreases, and the plastic deformation range extends with the increase in temperature under the same force. Meanwhile, as temperature increases, the fraction of elastic strain decreases and the fraction of viscous strain increases. Additionally, the viscoelastic mechanics of the PEMs is elucidated by varying the temperature and force. Finally, the weighting factor of compressive stress, temperature and time are obtained by multi-factor dominance analysis. This work shows that choosing the appropriate manufacturing temperature and stress is helpful to realize high-performance manufacturing of the PEM surface structures.

Key words: fuel cells, proton exchange membrane, micro hot embossing, thermo-mechanical coupling, constitutive model

中图分类号: