[1] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Zhonghua. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225. [2] 于梦阁, 潘振宽, 蒋荣超, 等. 基于近似模型的高速列车头型多目标优化设计[J]. 机械工程学报, 2019, 55(24):178-186. YU Mengge, PAN Zhenkuan, JIANG Rongchao, et al. Multi-objective optimization design of the high-speed train head based on the approximate model[J]. Journal of Mechanical Engineering, 2019, 55(24):178-186. [3] BEZERRA M, SANTELLI R, OLIVEIRA E, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5):965-977. [4] ZHOU Q, JIANG P, SHAO X, et al. A variable fidelity information fusion method based on radial basis function[J]. Advanced Engineering Informatics, 2017, 32:26-39. [5] KLEIJNEN J. Kriging metamodeling in simulation:A review[J]. European Journal of Operational Research, 2009, 192(3):707-716. [6] HU W, ZHAO F, DENG X, et al. A new sequential sampling method for surrogate modeling based on a hybrid metric[J]. Journal of Mechanical Design, 2024, 146(6):061705. [7] FUHG J, FAU A, NACKENHORST U. State-of-the-art and comparative review of adaptive sampling methods for kriging[J]. Archives of Computational Methods in Engineering, 2021, 28(4):2689-2747. [8] XU S, LIU H, WANG X, et al. A robust error-pursuing sequential sampling approach for global metamodeling based on Voronoi diagram and cross validation[J]. Journal of Mechanical Design, 2014, 136(7):071009. [9] YAO W, CHEN X, LUO W. A gradient-based sequential radial basis function neural network modeling method[J]. Neural Computing and Applications, 2009, 18(5):477-484. [10] LIU H, CAI J, ONG Y. An adaptive sampling approach for kriging metamodeling by maximizing expected prediction error[J]. Computers & Chemical Engineering, 2017, 106:171-182. [11] 王平, 郑松林, 吴光强. 基于协同优化和多目标遗传算法的车身结构多学科优化设计[J]. 机械工程学报, 2011, 47(2):102-108. WANG Ping, ZHENG SongPin, WU Guangqiang. Multidisciplinary design optimization of vehicle body structure based on collaborative optimization and multi-objective genetic algorithm[J]. Journal of Mechanical Engineering, 2011, 47(2):102-108. [12] 孙光永, 李光耀, 陈涛, 等. 多目标粒子群优化算法在薄板冲压成形中的应用[J]. 机械工程学报, 2009, 45(5):153-159. SUN Guangyong, LI Guangyao, CHEN Tao. Application of multi-objective particle swarm optimization in sheet metal forming[J]. Journal of Mechanical Engineering, 2009, 45(5):153-159. [13] 邢宇飞, 王成恩, 柳强. 基于Pareto解集蚁群算法的拆卸序列规划[J]. 机械工程学报, 2012, 48(9):186-192. XING Yufei, WANG Chengen, LIU Qiang. Disassembly sequence planning based on Pareto ant colony algorithm[J]. Journal of Mechanical Engineering, 2012, 48(9):186-192. [14] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731. [15] QI Y, MA X, LIU F, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary Computation, 2014, 22(2):231-264. [16] AURENHAMMER F. Voronoi diagrams-a survey of a fundamental geometric data structure[J]. ACM Computing Surveys, 1991, 23(3):345-405. [17] 方伟, 宋鑫宏. 基于Voronoi图盲区的无线传感器网络覆盖控制部署策略[J]. 物理学报, 2014, 63(22):2207011-22070110. FANG Wei, SONG Xinhong. A deployment strategy for coverage control in wireless sensor networks based on the blind-zone of Voronoi diagram[J]. Acta Physica Sinica, 2014, 63(22):2207011-22070110. [18] AUTE V, SALEH K, ABDELAZIZ O, et al. Cross-validation based single response adaptive design of experiments for kriging metamodeling of deterministic computer simulations[J]. Structural and Multidisciplinary Optimization, 2013, 48(3):581-605. [19] 程锦, 谭建荣, 余加红. 基于TOPSIS的注塑工艺参数多目标稳健优化设计[J]. 机械工程学报, 2011, 47(6):27-32. CHENG Jin, TAN Jianrong, YU Jiahong. Multi-objective robust optimization of injection molding process parameters based on TOPSIS[J]. Journal of Mechanical Engineering, 2011, 47(6):27-32. [20] MO S, LU D, SHI X, et al. A Taylor expansion‐based adaptive design strategy for global surrogate modeling with applications in groundwater modeling[J]. Water Resources Research, 2017, 53(12):10802-10823. [21] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [22] 徐弓岳, 丁华锋, 孙玉玉. 基于改进非支配排序遗传算法的正铲挖掘机工作装置优化设计[J]. 机械工程学报, 2016, 52(21):35-43. XU Gongyue, DING Huafeng, SUN Yuyu. Optimization of face-shovel excavator's attachment based on improved NSGA-II[J]. Journal of Mechanical Engineering, 2016, 52(21):35-43. [23] ZHANG Q, ZHOU A, ZHAO S, et al. Multiobjective optimization test instances for the CEC 2009 special session and competition[R]. University of Essex and Nanyang Technological University, Essex, UK and Singapore, technical report, 2008. [24] BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1):45-76. [25] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2):173-195. [26] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]. London:Springer London, 2005. [27] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO:A MATLAB platform for evolutionary multi-objective optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4):73-87. [28] LI D, PACKWOOD M, QI F, et al. 3D multiphysics modelling of high voltage IGBT module packaging[C]//Proceedings of the 201516th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2015. [29] HU W, CHOI K, CHO H. Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty[J]. Structural and Multidisciplinary Optimization, 2016, 54(4):953-970. |