• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (9): 137-151.doi: 10.3901/JME.2024.09.137

• 超声振动辅助加工 • 上一篇    下一篇

扫码分享

超声波滚压强化TC11钛合金的表面质量与摩擦磨损性能

郑开魁1,2, 赵信哲1, 牟刚1, 任志英2   

  1. 1. 福州大学先进制造学院 晋江 362200;
    2. 福州大学机械工程及自动化学院 福州 350108
  • 收稿日期:2023-05-18 修回日期:2023-11-15 出版日期:2024-05-05 发布日期:2024-06-18
  • 作者简介:郑开魁,男, 1986 年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学、表面工程、增材制造和机器人技术。E-mail: kuikui@fzu.edu.cn;牟刚(通信作者),男, 1989 年出生,博士,讲师,硕士研究生导师。主要研究方向为先进制造技术。E-mail: MouGang@fzu.edu.cn
  • 基金资助:
    国家自然科学基金(52275178)、福建省自然科学基金(2020J05115)和福州大学贵重仪器设备开放测试基金(2023T019)资助项目。

Surface Quality, Friction and Wear Properties of TC11 Titanium Alloy Strengthened Using Ultrasonic Rolling

ZHENG Kaikui1,2, ZHAO Xinzhe1, MOU Gang1, REN Zhiying2   

  1. 1. School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200;
    2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
  • Received:2023-05-18 Revised:2023-11-15 Online:2024-05-05 Published:2024-06-18

摘要: 采用超声波滚压工艺对TC11钛合金表面进行光整强化加工,利用OM、白光干涉仪、SEM、EDS和XRD研究了超声波滚压工艺参数对钛合金表层的微观结构和表面粗糙度的影响规律;采用显微硬度计、多功能摩擦磨损试验机研究了滚压表面的硬度和摩擦磨损性能。研究结果表明,钛合金表面粗糙度随着滚压功率、滚压次数、静压力、压下量、主轴转速和进给量的增加呈先降后增的趋势,分别在滚压功率660 W、滚压次数5次、静压力0.20 MPa、压下量0.15 mm、主轴转速200 r·min-1、进给量0.10 mm·r-1时达到最低值。随着功率的提高,钛合金表面硬度增大,摩擦因数和磨损量降低;随滚压次数、静压力、压下量、主轴转速和进给量的增加,表面硬度呈先升后降的趋势,摩擦因数和磨损量呈先降后升的趋势,在滚压功率990 W、滚压次数5次、静压力0.20 MPa、压下量0.15 mm、主轴转速200 r·min-1、进给量0.10 mm·r-1时,硬度达到最高值,摩擦因数和磨损量达到最低值。对工艺参数进行响应曲面优化,获得优化工艺参数为滚压功率990 W、滚压次数5次、静压力0.20 MPa、压下量0.15 mm、主轴转速198 r·min-1、进给量0.10 mm·r-1。与滚压前的钛合金表面相比,表面硬度从338 HV增至461 HV,提高了36.4%;表面粗糙度从1.88 μm降至0.19 μm,下降了89.9%;磨损量从0.60 mg降为0.10 mg,降低了83.3%。

关键词: 超声波滚压, 钛合金, 表面质量, 摩擦因数, 磨损量

Abstract: The surface of the TC11 titanium alloy is significantly strengthened through the ultrasonic tumbling process. The effect of ultrasonic tumbling process parameters on the microstructure and surface roughness of a titanium alloy using multiple techniques are investigated, including OM, white light interferometry, SEM, EDS, and XRD. The hardness, friction, and wear properties of the rolling surface are analyzed using a microhardness tester and a multifunctional friction-wear tester. The results indicate that the surface roughness of the titanium alloy decreases initially and then increases with an increase in rolling power, rolling times, static pressure, reduction, spindle speed, and feed rate. The lowest value is achieved with the following parameters: 660 W rolling power, 5 rolling times, static pressure of 0.20 MPa, reduction of 0.15 mm, spindle speed of 200 r·min-1, and feed rate of 0.10 mm·r-1. With an increase in power, the surface hardness of titanium alloy increases, which leads to a reduction in friction coefficient and wear loss. As the rolling times, static pressure, reduction, spindle speed, and feed rate increase, the surface hardness initially increases and then decreases. Meanwhile, the friction coefficient and wear loss tend to decrease initially and then increase. When the rolling power is set to 990 W, the rolling frequency is 5 times, the static pressure is 0.20 MPa, the reduction is 0.15 mm, the spindle speed is 200 r·min-1, and the feed rate is 0.10 mm·r-1, the hardness reaches its maximum value, while the friction coefficient and wear loss reach their minimum values. Response surface optimization was conducted to obtain the optimal process parameters, including a rolling power of 990 W, rolling frequency of 5 times, static pressure strength of 0.20 MPa, reduction of 0.15 mm, spindle speed of 198 r·min-1, and feed rate of 0.10 mm·r-1. Compared to the surface of the titanium alloy before rolling, the hardness increased by 36.4% from 337 HV to 461 HV, the surface roughness decreased by 89.9% from 1.88 μm to 0.19 μm, and the wear loss decreased by 83.3% from 0.60 mg to 0.10 mg.

Key words: ultrasonic rolling, titanium alloy, surface quality, friction coefficient, wear loss

中图分类号: