• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (24): 312-322.doi: 10.3901/JME.2023.24.312

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于改进SVM算法的调节阀空化状态识别

李贝贝1, 孙深圳1, 刘秀梅1, 刘启航1, 刘申1, 赵巧2, 贺杰3   

  1. 1. 中国矿业大学机电工程学院 徐州 221116;
    2. 中国矿业大学大学生创新训练中心 徐州 221116;
    3. 徐州工程学院电气与控制工程学院 徐州 221018
  • 收稿日期:2023-01-15 修回日期:2023-07-05 出版日期:2023-12-20 发布日期:2024-03-05
  • 通讯作者: 刘秀梅(通信作者),女,1982年出生,博士,教授,博士研究生导师。主要研究方向为流体传动及控制、机电液一体化。E-mail:liuxm@cumt.edu.cn
  • 作者简介:李贝贝,男,1984年出生,博士,副教授,硕士研究生导师。主要研究方向为流体传动及控制、机电液一体化。E-mail:li_cumt@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(51875559)和江苏省优势学科建设(PAPD)资助项目

Cavitation State Recognition of Regulating Valve Based on Improved SVM Algorithm

LI Beibei1, SUN Shenzhen1, LIU Xiumei1, LIU Qihang1, LIU Shen1, ZHAO Qiao2, HE Jie3   

  1. 1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116;
    2. College Student Innovation Training Center, China University of Mining and Technology, Xuzhou 221116;
    3. School of Electrical and Control Engineering, Xuzhou University of Technology, Xuzhou 221018
  • Received:2023-01-15 Revised:2023-07-05 Online:2023-12-20 Published:2024-03-05

摘要: 空化现象往往致使调节阀产生振动、噪声以及工作效率下降等问题,严重影响煤液化系统的安全运行和元件寿命。准确识别调节阀内的空化状态可以为监测调节阀内空化状态、调节阀预测性维修提供数据支撑。针对调节阀空化状态难以有效识别的问题,构建一种基于遗传算法和核主成分分析(Kernel principle component analysis,KPCA)的支持向量机(Support vector machines,SVM)模型来对调节阀空化状态进行识别。利用时域、频域以及小波包变换提取振动信号的特征,通过KPCA提取特征向量的主成分,然后使用遗传算法优化后的SVM进行调节阀空化状态识别。试验结果表明,KPCA能够有效提取振动信号特征向量的非线性主成分,构建的SVM可有效识别调节阀空化状态。相比基于神经网络的空化状态识别而言,改进SVM具有更好的识别效果,识别准确率达98.7%。

关键词: 调节阀, 空化状态识别, SVM, 遗传算法

Abstract: The cavitation often causes vibration, noise and reduction of working efficiency of the regulating valve, which will seriously affect the safe operation and component life of the coal liquefaction system. Accurately identifying the cavitation state in the regulating valve can provide data support for monitoring the cavitation state in the regulating valve and predictive maintenance of the regulating valve. Due to it is difficult to effectively identify the cavitation state of the regulating valve, a support vector machines(Support vector machines, SVM) model based on genetic algorithm and kernel principle component analysis(Kernel principle component analysis, KPCA) is proposed to identify the cavitation state of the regulating valve in this paper. The characteristics of the vibration signal are extracted by time domain, frequency domain and wavelet packet transform, the principal components of the feature vector are extracted, then the SVM optimized by genetic algorithm is used for cavitation state Recognition of regulating valve. The experimental results show that KPCA can effectively extract the nonlinear principal components of the eigenvectors of vibration signals, and the constructed SVM can effectively identify the cavitation state of the regulating valve. Compared with the neural network, the improved SVM has better recognition effect, whose identification accuracy rate could reach to 98.7%.

Key words: regulating valve, cavitation status recognition, SVM, genetic algorithm

中图分类号: