[1] 杨军,张亚辉,朱继宏,等. 飞机复合材料蒙皮的优化设[J]. 机械制造,2013,51(11):44-47. YANG Jun,ZHANG Yahui,ZHU Jihong,et al. Optimal design of aircraft skin withcomposition material[J]. Machinery,2013,51(11):44-47. [2] DEY S,NASKAR S,MUKHOPADHYAY T,et al. Uncertain natural frequency analysis ofcomposite plates including effect of noise-apolynomial neural network approach[J]. Composite Structures,2016,143:130-142. [3] DEY S,MUKHOPADHYAY T,NASKAR S,et al. Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates[J]. Journal of Sandwich Structures and Materials,2019,21(1):366-397. [4] HARLAND D M,LORENZ R. Space systems failures:disasters and rescues of satellites,rocket and space probes[M]. New York:Springer Science & Business Media,2007. [5] NOOR A K,BURTON W S,BERT C W. Computational models for sandwich panels and shells[J]. Applied Mechanics Reviews,1996,49:155-199. [6] ALTENBACH H. Theories for laminated and sandwich plates[J]. Mechanics ofcomposite materials,1998,34(3):243-252. [7] KANT T. A critical review and some results of recently developed refined theories of fiber-reinforced laminatedcomposites and sandwiches[J]. Composite structures,1993,23(4):293-312. [8] LIEW K M. Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method[J]. Journal of Sound and Vibration,1996,198(3):343-360. [9] 魏代同,陈星,陈玉刚,等. 基于本征正交分解的叶片碰摩系统降阶方法[J]. 航空动力学报,2022,37(4):711-720. WEI Daitong,CHEN Xing,CHEN Yugang,et al. Reduced order method of blade rubbing system based on proper orthogonal decomposition[J]. Journal of Aerospace Power,2022,37(4):711-720. [10] 龚喜盈,张琳,郁新华. 基于Volterra级数降阶模型的无人机阵风减缓主动控制律设计[J]. 飞行力学,2022,40(4):40-46. GONG Xiying,ZHANG Lin,YU Xinhua. Deign of gust alleviation active control law for UAV of Volterra series-based reduced order model[J]. Flight Dynamics,2022,40(4):40-46. [11] 韩旭,姜潮,陈国栋,等. 基于代理模型的汽车结构安全多目标优化的研究报告[J]. 科技创新导报,2016,13(19):179-180. HAN Xu,JIANG Chao,CHEN Guodong,et al. Multi-Objective optimization method based on metamodel for vehicle structural safety[J]. Science and Technology Innovation Herald,2016,13(19):179-180. [12] 白影春. 考虑认知不确定性的结构可靠性分析方法研究[D]. 长沙:湖南大学,2013. BAI Yingchun. Rearch on structural reliability analysis methods under epstemic uncertainties[D]. Changsha:Hunan University,2013. [13] 陈霞,李磊,岳珠峰,等. Kriging代理模型下基于垂距的多点取样算法[J]. 机械工程学报,2015,51(9):153-158. CHEN Xia,LI Lei,YUE Zhufeng,et al. Sampling method with multi-point sampling algorithm based on vertical distance in Kriging model[J]. Journal of Mechanical Engineering,2015,51(9):153-158. [14] OSTERTAGOVÁ E. Modelling using polynomial regression[J]. Procedia Engineering,2012,48:500-506. [15] 丁军,古愉川,黄霞,等. 基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究[J]. 机械工程学报,2022,58(10):78-86. DING Jun,GU Yuchuan,HUANG Xia,et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering,2022,58(10):78-86. [16] ZHANG X,LIU Y,CAO X B,et al. Uncertain natural characteristics analysis of laminatedcomposite plates considering geometric nonlinearity[J].composite structures,2023,315:117028. [17] BARBOSA A,UPADHYAYA P,IYPE E. Neural network for mechanical property estimation of multilayered laminatecomposite[J]. Materials Today:Proceedings,2020,28:982-985. [18] Al-ASSAF Y,EL KADI H. Fatigue life prediction of unidirectional glass fiber/epoxycomposite laminae using neural networks[J]. Composite Structures,2001,53(1):65-71. [19] MALDAGUE X,LARGOUËT Y,COUTURIER J P. A study of defect depth using neural networks in pulsed phase thermography:modelling,noise,experiments[J]. Revue générale de thermique,1998,37(8):704-717. [20] ZHANG Z,KLEIN P,FRIEDRICH K. Dynamic mechanical properties of PTFE based short carbon fibre reinforcedcomposites:experiment and artificial neural network prediction[J]. Composites Science and Technology,2002,62(7-8):1001-1009. [21] GHRITLAHRE H K,PRASAD R K. Application of ANN technique to predict the performance of solar collector systems-A review[J]. Renewable and Sustainable Energy Reviews,2018,84:75-88. [22] 高亮,杨林,周驰等. 基于粒子群优化的神经网络训练算法在产品种类预测中的应用[J]. 计算机集成制造系统,2006(3):465-469. GAO Liang,YANG Lin,ZHOU Chi,et al. Application of neural network training algorithm based on particle swarm optimization in product species prediction[J]. Computer Integrated Manufacturing System,2006(3):465-469. [23] 裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报,2019,55(8):1-13. PEI Hong,HU Changhua,SI Xiaosheng,et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering,2019,55(8):1-13. [24] FENG S,ZHOU H Y,DONG H B. Using deep neural network with small dataset to predict material defects[J]. Materials & Design,2019,162:300-310. [25] LI H,QIU L,WANG Z,et al. A prediction method of mechanical product assembly precision based on the fusion of measured samples and assembly feature fidelity samples[J]. The International Journal of Advanced Manufacturing Technology,2020,111(9):2877-2890. [26] ZHANG Y,YIN Y,GUO D,et al. Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification[J]. Pattern Recognition,2014,47(10):3414-3428. [27] SAYAH M,GUEBLI D,AL MASRY Z,et al. Robustness testing framework for RUL prediction deep LSTM networks[J]. ISA Transactions,2021,113:28-38. [28] WU J,HU K,CHENG Y,et al. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network[J]. ISA Transactions,2020,97:241-250. [29] 鲍丹,侯保林. 基于深度学习的单自由度机械臂定位可靠性估计[J]. 振动与冲击,2021,40(15):246-252. BAO Dan,HOU Baolin. Positioning reliability estimation of SDOF manipulator based on deep learning. Journal of Vibration and Shock,2021,40(15):246-252. [30] LI X Q,JIANG H K,LIU Y,et al. An integrated deep multiscale feature fusion network for aeroengine remaining useful life prediction with multisensor data[J]. Knowledge-Based Systems,2022,235:107652. [31] LUO J,LU W. Comparison of surrogate models with different methods in groundwater remediation process[J]. Journal of Earth System Science,2014,123:1579-1589. [32] DONG J W,CHEN Y M,YAO B Y,et al. A neural network boosting regression model based on XGBoost[J]. Applied Soft Computing,2022,125:109067. [33] 邢誉峰,刘波. 板壳自由振动的精确解[D]. 北京:科学出版社,2015. XING Yufeng,LIU Bo. Accurate solution of the free vibration of the plate and shell[D]. Beijing:Science Press,2015. [34] RASHIDINIA J,TAHMASEBI A. Approximate solution of linear integro-differential equations by using modified Taylor expansion method[J]. World Journal of Modelling and Simulation,2013,9(4):289-301. |