[1] LIU L,YUAN B,YANG X P,et al. Experimental study of a novel loop heat pipe with a vapor-driven jet injector and a boiling pool[J]. International Journal of Heat and Mass Transfer,2022,184:122267. [2] SAJJAD U,SADEGHIANJAHROMI A,ALI H M,et al. Enhanced pool boiling of dielectric and highly wetting liquids-A review on surface engineering[J]. Applied Thermal Engineering,2021,195:117074. [3] 汤勇,唐恒,万珍平,等. 超薄微热管的研究现状及发展趋势[J]. 机械工程学报,2017,53(20):131-144. TANG Yong,TANG Heng,WAN Zhenping,et al. Development status and perspective trend of ultra-thin micro heat pipe[J]. Journal of Mechanical Engineering,2017,53(20):131-144. [4] 汤勇,孙亚隆,唐恒,等. 柔性热管的研究现状与发展趋势[J]. 机械工程学报,2022,58(10):265-279. TANG Yong,SUN Yalong,TANG Heng,et al. Development status and perspective trend of flexible heat pipe[J]. Journal of Mechanical Engineering,2022,58(10):265-279. [5] WEN R,XU S,LEE Y C,et al. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures[J]. Nano Energy,2018,51:373-382. [6] 李红传,纪献兵,郑晓欢,等. 锥形毛细芯平板热管传热特性研究[J]. 机械工程学报,2015,51(24):132-138. LI Hongchuan,JI Xianbing,ZHENG Xiaohuan,et al. Study on heat transfer properties of flat heat pipe with conical capillary wicks[J]. Journal of Mechanical Engineering,2015,51(24):132-138. [7] ZHOU G H,LI J,JIA Z Z. Power-saving exploration for high-end ultra-slim laptopcomputers with miniature loop heat pipe cooling module[J]. Applied Energy,2019,239:859-875. [8] 况旭,魏昕,谢小柱,等. 激光制备微热管复合沟槽吸液芯及毛细压力验证[J]. 机械设计与制造,2021,(3):145-148. KUANG Xu,WEI Xin,XIE Xiaozhu,et al. The processing of micro heat pipecomposite grooves on the micro heat pipe by laser and capillary pressure verification[J]. Machinery Design & Manufacture,2021,(3):145-148. [9] LIANG G T,MUDAWAR I. Review of spray cooling-Part 1. Single-phase and nucleate boiling regimes,and critical heat flux[J]. International Journal of Heat and Mass Transfer,2017,115:1174-1205. [10] ZU S F,LIAO X N,HUANG Z,et al. Visualization study on boiling heat transfer of ultra-thin flat heat pipe with single layer wire mesh wick[J]. International Journal of Heat and Mass Transfer,2021,173:121239. [11] CHANG C,HAN Z Y,HE X Y,et al. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs[J]. Scientific Reports,2021,11(1):8255. [12] HU H,XU X M,LI R Z,et al. Study the heat dissipation performance of lithium-ion battery liquid cooling system based on flat heat pipe[J]. Fire and Materials,2022,46(1):168-180. [13] ZHOU J,LIU L,YANG X P,et al. Visualization research on influencing factors of flat heat pipes[J]. Applied Thermal Engineering,2022,207:118193. [14] GERASIMOV Y F,MAIDANIK Y F,SHCHEGOLEV G T,et al. Low-temperature heat pipes with separate channels for vapor and liquid[J]. Journal of engineering physics,1976,28(6):683-685. [15] HUI M,LUO L,BADIEI A,et al. Performance investigation of a micro-channel flat separated loop heat pipe system for data centre cooling[J]. International Journal of Low-Carbon Technologies,2021,16(1):98-113. [16] ZHANG Z K,ZHAO R Z,LIU Z C,et al. Application of biporous wick in flat-plate loop heat pipe with long heat transfer distance[J]. Applied Thermal Engineering,2021,184:116283. [17] DOMICIANO K G,KRAMBECK L,FLOREZ J P M,et al. Thin diffusion bonded flat loop heat pipes for electronics. Fabrication, modelling and testing[J]. Energy Conversion and Management,2022,255:115329. [18] TANG H,TANG Y,WAN Z P,et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy,2018,223:383-400. [19] SREEJITH K P,SHARMA A K,BASU P K,et al. Etching methods for texturing industrial multi-crystalline silicon wafers:A review[J]. Solar Energy Materials and Solar Cells,2022,238:111531. [20] ZHAN X Y,LUO Y L,WANG Z Y,et al. Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting[J]. Journal of Energy Chemistry,2022,65:19-25. [21] 张寒. 超薄平板热管的制备及其传热性能研究[D]. 南京:南京航空航天大学,2019. ZHANG Han. Preparation and thermal performance study of ultra-thin flat heat pipe[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [22] 王树立. 基于图案化微结构及表面的微纳流体控制[D]. 长春:吉林大学,2018. WANG Shuli. Micro/nanofluidic control based on patterned microstructures and surfaces[D]. Changchun:Jilin University,2018. [23] BAO Y D,LIU W,ZHAO Y Q,et al. Fabrication of black GaAs by maskless inductively coupled plasma etching in Cl-2/BCl3/O-2/Ar chemistry[J]. Journal of Vacuum Science & Technology B,2022,40(2):022205. [24] CHENG P F,WANG H L,MULLER B,et al. Photo-thermoelectric conversion using black silicon with enhanced light trapping performance far beyond the band edge absorption[J]. Acs Applied Materials & Interfaces,2021,13(1):1818-1826. [25] SONG Y X,WANG C,DONG X R,et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser[J]. Optics and Laser Technology,2018,102:25-31. [26] SUN K,YANG H,XUE W,et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel[J]. Applied Surface Science,2018,436:263-267. [27] SUN Y L,SHUAI M,ZHANG S W,et al. Hierarchically 3D-textured copper surfaces with enhanced wicking properties for high-power cooling[J]. Applied Thermal Engineering,2020,178:115650. [28] ZHAO X,ZHENG Y H,DAI H H,et al. Wet-chemistry:A useful tool for deriving metal-organic frameworks toward supercapacitors and secondary batteries[J]. Advanced Materials Interfaces,2022,9(13):2102595. [29] ZHANG M F,YANG M,OKIGAWA Y,et al. Patterning of graphene using wet etching with hypochlorite and UV light[J]. Scientific Reports,2022,12(1):4541. [30] XIE X,WENG Q,LUO Z,et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat and Mass Transfer,2018,125:658-669. [31] YOU R,LIU Y Q,HAO Y L,et al. Laser fabrication of graphene-based flexible electronics[J]. Adv Mater,2020,32(15):e1901981. [32] LIU T Q,YAN W T,WU W,et al. Thermal performance enhancement of vapor chamber with modified thin screen mesh wick by laser etching[J]. Case Studies in Thermal Engineering,2021,28:101525. [33] KALITA S,SEN P,SEN D,et al. Experimental study of nucleate pool boiling heat transfer on microporous structured by chemical etching method[J]. Thermal Science and Engineering Progress,2021,26:101114. [34] ZHANG K Y,LV S Z,ZHOU Q,et al. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction[J]. Sensors and Actuators B. Chemical,2020,307:127631. [35] YUAN B,ZHANG Y H,LIU L,et al. Heat transfer enhancement on micro-pin-finned surfaces under high-frequency reciprocating flow[J]. Applied Thermal Engineering,2020,175:115378. [36] IL SHIM D,CHOI G,LEE N,et al. Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays[J]. Acs Applied Materials & Interfaces,2017,9(20):17596-17603. [37] CHEN G,TANG Y,DUAN L H,et al. Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors[J]. Renewable Energy,2020,146:2234-2242. [38] ZHANG S W,LIN L,CHEN G,et al. Experimental study on the capillary performance of aluminum micro-grooved wicks with reentrant cavity array[J]. International Journal of Heat and Mass Transfer,2019,139:917-927. [39] HUANG G H,TANG Y,WANG P T,et al. Thermal characterisation of micro flat aluminium heat pipe arrays by varying working fluid and inclination angle[J]. Applied Sciences-Basel,2018,8(7):1052. [40] NIRGUDE V V,SAHU S K. Enhancement of nucleate boiling heat transfer using structured surfaces[J]. Chemical Engineering and Processing-Process Intensification,2017,122:222-234. [41] RAHMAN M M,MCCARTHY M. Effect of length scales on the boiling enhancement of structured copper surfaces[J]. Journal of Heat Transfer-Transactions of the Asme,2017,139(11):111508. [42] DHADDA G,HAMED M,KOSHY P. Electrical discharge surface texturing for enhanced pool boiling heat transfer[J]. Journal of Materials Processing Technology,2021,293:117083. [43] YEOM T,SIMON T,ZHANG T,et al. Enhanced heat transfer of heat sink channels with micro pin fin roughened walls[J]. International Journal of Heat and Mass Transfer,2016,92:617-627. [44] MARQUES C,KELLY K W. Fabrication and performance of a pin fin micro heat exchanger[J]. Journal of Heat Transfer-Transactions of the Asme,2004,126(3):434-444. [45] WANG Y Q,LYU S S,LUO J L,et al. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability[J]. Applied Surface Science,2017,422:388-393. [46] WANG Z Y,ZHANG N,JIAO B B,et al. Investigation of thermal characteristics and two-phase flows of a star-shape thin heat pipe[J]. Applied Thermal Engineering,2016,103:9-15. [47] LIU C,HU D H,LI Q,et al. Vapor chamber with two-layer liquid supply evaporator wick for high-heat-flux devices[J]. Applied Thermal Engineering,2021,190:116803. [48] 于慧文,崔文宇,郝婷婷,等. 梯度润湿表面脉动热管传热性能的研究[J]. 化工进展,2020,39(11):4375-4383. YU Huiwen,CUI Wenyu,HAO Tingting,et al. Heat transfer performance of wettability gradient surface oscillating heat pipe[J]. Chemical Industry and Engineering Progress,2020,39(11):4375-4383. [49] PETTIGREW K,KIRSHBERG J,YERKES K,et al. Performance of a MEMS based micro capillary pumped loop for chip- level temperature control[C]//the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001),Jan 21-25,2001,Interlaken,Switzerland:IEEE,2001:427-430. [50] MOON S H,HWANG G,EDA. Development of the micro capillary pumped loop for electronic cooling[C]//proceedings of the 13th International Workshop on Thermal Investigation of ICs and Systems,Sep 17-19,2007,Budapest,HUNGARY:IEEE,2007:72-76. [51] MA A X,WEI J J,YUAN M Z,et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer,2009,52(13-14):2925-2931. [52] SHARRATT S,PENG C,JU Y S. Micro-post evaporator wicks with improved phase change heat transfer performance[J]. International Journal of Heat and Mass Transfer,2012,55(21-22):6163-6169. [53] LI D,WU G S,WANG W,et al. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires[J]. Nano Letters,2012,12(7):3385-3390. [54] YANG K S,LIN C C,SHYU J C,et al. Performance and two-phase flow pattern for micro flat heat pipes[J]. International Journal of Heat and Mass Transfer,2014,77:1115-1123. [55] ZAMURUYEV K O,BARDAWEEL H K,CARRON C J,et al. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface[J]. Langmuir,2014,30(33):10133-10142. [56] HAMIDNIA M,LUO Y,LI Z X,et al. Capillary and thermal performance enhancement of rectangular grooved micro heat pipe with micro pillars[J]. International Journal of Heat and Mass Transfer,2020,153:119581. [57] WAN W,DENG D X,HUANG Q S,et al. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering,2017,114:436-449. [58] DENG D X,WAN W,QIN Y,et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer,2017,105:338-349. [59] VOGLAR J,GREGORCIC P,ZUPANCIC M,et al. Boiling performance on surfaces with capillary-length-spaced one- and two-dimensional laser-textured patterns[J]. International Journal of Heat and Mass Transfer,2018,127:1188-1196. [60] ZHANG Y,XIA Z,SONG B Z,et al. Experimental analysis on the loop heat pipes with different microchannel evaporators[J]. Applied Thermal Engineering,2020,178:115547. [61] LOU D Y,LI T,LIANG E K,et al. Superhydrophobic/superhydrophilic hybrid copper surface enhanced micro heat pipe by using laser selective texturing[J]. Ecs Journal of Solid State Science and Technology,2021,10(11):113005. [62] 唐恒,汤勇,万珍平,等. 平板铝热管微沟槽吸液芯的制备及毛细性能研究[J]. 机械工程学报,2019,55(6):186-193. TANG Heng,TANG Yong,WANG Zhenping,et al. Fabrication and capillary performance of micro-grooved wicks for aluminium flat-plate heat pipes[J]. Journal of Mechanical Engineering,2019,55(6):186-193. [63] KANG S W,HUANG D L. Fabrication of star grooves and rhombus grooves micro heat pipe[J]. Journal of Micromechanics and Microengineering,2002,12(5):525-531. [64] QIAN B T,SHEN Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J]. Langmuir,2005,21(20):9007-9009. [65] WANG X D,ZOU L L,LIU J G,et al. Experimental investigation of copper-grooved micro heat pipes (MHPs)[J]. Journal of Solid State Lighting,2014,1(1):14. [66] CHEN S W,HSIEH J C,CHOU C T,et al. Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes[J]. Sensors and Actuators a-Physical,2007,139(1-2):78-87. [67] DONG L N,QUAN X J,CHENG P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer,2014,71:189-196. [68] GONG B Y,YANG H C,WU S H,et al. Nanotexturing-enhanced heat transfer and interfacial evaporation for energy-efficient solar-thermal water desalination[J]. International Journal of Heat and Mass Transfer,2022,186:122462. [69] BAI P,ZHOU L P,DU X Z. Effects of liquid film thickness and surface roughness ratio on rapid boiling of water over copper plates[J]. International Communications in Heat and Mass Transfer,2021,120:105036. [70] THAKUR S S,CHANDEL S S,KAKORIA A,et al. Enhancement in pool boiling heat transfer of ethanol and nanofluid on novel supersonic nanoblown nanofiber textured surface[J]. Experimental Heat Transfer,2021,35(4):516-532. [71] MAHAPATRA P S,GHOSH A,GANGULY R,et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J]. International Journal of Heat and Mass Transfer,2016,92:877-883. [72] XIN F,MA T,CHEN Y T,et al. Study on chemical spray etching of stainless steel for printed circuit heat exchanger channels[J]. Nuclear Engineering and Design,2019,341:91-99. [73] BANG S,RYU S,KI S,et al. Superhydrophilic catenoidal aluminum micropost evaporator wicks[J]. International Journal of Heat and Mass Transfer,2020,158:120011. [74] LI Y,ZHENG Y,CHEN Y,et al. The exact regulation of temperature evolutions for droplet impact on ultrathin cold films at superhydrophilic surface[J]. Chemical Engineering Science,2019,193:205-216. [75] SHIOGA T,MIZUNO Y,NAGANO H. Operating characteristics of a new ultra-thin loop heat pipe[J]. International Journal of Heat and Mass Transfer,2020,151:119436. [76] SHIOGA T,ABE T,NAGANO H. Submillimeter-thick loop heat pipes fabricated using two-layer copper sheets for cooling electronic applications[J]. Applied Thermal Engineering,2020,181:116018. [77] DAMOULAKIS G,MEGARIDIS C M. Wick-free paradigm for high-performance vapor-chamber heat spreaders[J]. Energy Conversion and Management,2022,253:115138. [78] KWAK H J,KIM J H,MYUNG B S,et al. Behavior of pool boiling heat transfer and critical heat flux on high aspect-ratio microchannels[J]. International Journal of Thermal Sciences,2018,125:111-120. [79] DING C S,SONI G,BOZORGI P,et al. A flat heat pipe architecture based on nanostructured titania[J]. Journal of Microelectromechanical Systems,2010,19(4):878-84. [80] LEWIS R,LIEW L A,XU S S,et al. Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin,2015,60(7):701-706. |