机械工程学报 ›› 2023, Vol. 59 ›› Issue (17): 1-16.doi: 10.3901/JME.2023.17.001
刘伟1,2, 刘顺1,2, 邓朝晖1,2, 葛吉民1,2
收稿日期:
2022-09-28
修回日期:
2023-04-24
出版日期:
2023-09-05
发布日期:
2023-11-16
作者简介:
刘伟,男,1986年出生,博士,副教授。主要研究方向为高效精密智能磨削、磨抛机器人。E-mail:lw1986tiger@163.com
基金资助:
LIU Wei1,2, LIU Shun1,2, DENG Zhaohui1,2, GE Jimin1,2
Received:
2022-09-28
Revised:
2023-04-24
Online:
2023-09-05
Published:
2023-11-16
摘要: 工业机器人在推进工业自动化、柔性化、智能化发展道路上起着举足轻重的作用。机器人定位误差是制约其在生产制造领域应用的关键因素之一,定位误差的大小直接决定其制造所得产品的质量和精度,而机器人误差补偿技术对提高机器人的定位精度具有重要意义。以工业机器人定位误差测量-预测-补偿为线索,详细综述了国内外学者在开环测量和闭环测量技术、基于模型的误差预测和基于非模型的误差预测方法、在线补偿和离线补偿技术的研究进展。最后,对该领域的发展趋势进行了展望,以期对工业机器人定位误差补偿研究提供一定参考。
中图分类号:
刘伟, 刘顺, 邓朝晖, 葛吉民. 工业机器人定位误差补偿技术研究进展[J]. 机械工程学报, 2023, 59(17): 1-16.
LIU Wei, LIU Shun, DENG Zhaohui, GE Jimin. Research Progress on Positioning Error Compensation Technology of Industrial Robot[J]. Journal of Mechanical Engineering, 2023, 59(17): 1-16.
[1] 高峰,郭为忠. 中国机器人的发展战略思考[J]. 机械工程学报,2016,52(7):1-5. GAO Feng,GUO Weizhong. Thinking of the development strategy of robots in China[J]. Journal of Mechanical Engineering,2016,52(7):1-5. [2] 晁永生,刘海江. 白车身焊接机器人加工路径优化和仿真[J]. 中国机械工程,2010,21(4):442-445. CHAO Yongsheng,LIU Haijiang. Welding robot path optimization and simulation for body in white[J]. China Mechanical Engineering,2010,21(4):442-445. [3] IGLESIAS I,SEBASTIÁN M A,ARES J E. Overview of the state of robotic machining:current situation and future potential[J]. Procedia Engineering,2015,132:911-917. [4] MICHALOS G,KOUSI N,KARAGIANNIS P,et al. Seamless human robot collaborative assembly-an automotive case study[J]. Mechatronics,2018,55:194-211. [5] ZHU Z,TANG X,CHEN C,et al. High precision and efficiency robotic milling of complex parts:Challenges,approaches and trends[J]. Chinese Journal of Aeronautics,2021,35(2):22-46 [6] CVITANIC T, NGUYEN V, MELKOTE S N. Pose optimization in robotic machining using static and dynamic stiffness models[J]. Robotics and Computer-Integrated Manufacturing,2020,66(4):101992. [7] 关立文,陈志雄,刘春,等. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版),2021,61(9):965-971. GUAN Liwen,CHEN Zhixiong,LIU Chun,et al. Static stiffness modeling for optimizing drilling and riveting robots[J]. Journal of Tsinghua University (Science and Technology),2021,61(9):965-971. [8] BU Y,LIAO W,TIAN W,et al. Stiffness analysis and optimization in robotic drilling application[J]. Precision Engineering,2017,49:388-400. [9] CHEN X,ZHANG Q,SUN Y. Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method[J]. Robotics and Computer-Integrated Manufacturing,2019,57:46-58. [10] 尹仕斌. 工业机器人定位误差分级补偿与精度维护方法研究[D]. 天津:天津大学,2015. YIN Shibin. Research on the graded calibration and accuracy maintenance technique for industrial robot[D]. Tianjin:Tianjin University,2015. [11] XIONG G,DING Y,ZHU L. Stiffness-based pose optimization of an industrial robot for five-axis milling[J]. Robotics and Computer-Integrated Manufacturing,2019,55:19-28. [12] WU Y,KLIMCHIK A,CARO S,et al. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments[J]. Robotics and Computer-Integrated Manufacturing,2015,35:151-168. [13] 吴锦辉,陶友瑞. 工业机器人定位精度可靠性研究现状综述[J]. 中国机械工程,2020,546(18):2180-2188. WU Jinhui,TAO Yourui. Review on research status of positioning accuracy reliability of industrial robot[J]. China Mechanical Engineering,2020,546(18):2180-2188. [14] 董慧颖,李文广. 一种基于平面精度的机器人标定方法及仿真[J]. 中国机械工程,2011,329(17):2039-2042. DONG Huiying,LI Wenguang. Robot calibration based on planar precision[J]. China Mechanical Engineering,2011,329(17):2039-2042. [15] 陈宵燕. 工业机器人多模式标定及刚柔耦合误差补偿方法研究[D]. 无锡:江南大学,2020. CHEN Xiaoyan. Research on multi-mode calibration and rigid-flexible coupling error compensation method for industrial robot[D]. Wuxi:Jiangnan University,2020. [16] 史晓佳,张福民,曲兴华,等. KUKA工业机器人位姿测量与在线误差补偿[J]. 机械工程学报,2017,53(8):1-7. SHI Xiaojia,ZHANG Fumin,QU Xinghua,et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering,2017,53(8):1-7. [17] NUBIOLA A,BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing,2013,29(1):236-245. [18] XU X,ZHU D,ZHANG H Y,et al. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements[J]. The International Journal of Advanced Manufacturing Technology,2016,90:635-647. [19] 唐宇存,李锦忠,林安迪,等. 基于三坐标测量机的机器人位姿精度检测方法[J]. 计算机工程与应用,2020,56(5):257-262. TANG Yucun,LI Jinzhong,LIN Andi,et al. Method for measuring robot pose accuracy based on coordinate measuring machine[J]. Computer Engineering and Applications,2020,56(5):257-262. [20] SELVA G L,MOTTA J. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2011,33(1):15-21. [21] GAN Y,DUAN J,DAI X. A calibration method of robot kinematic parameters by drawstring displacement sensor[J]. International Journal of Advanced Robotic Systems,2019,16(5):1-9. [22] ZHONG X L,LEWIS J M. A new method for autonomous robot calibration[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. Nagoya, Aichi,Japan:IEEE,1995:1790-1795. [23] BESNARD S,KHALIL W,GARCIA G. Advances in robot kinematics[M]. Netherlands:Springer,2000. [24] JOUBAIR A,BONEV I A. Non-kinematic calibration of a six-axis serial robot using planar constraints[J]. Precision Engineering,2015,40:325-333. [25] MEGGIOLARO M A,SCRIFFIGNANO G,DUBOWSKY S. Manipulator calibration using a single endpoint contact constraint[C]//American Society of Mechanical Engineers. Proceedings of the 26th Biennial Mechanisms And Robotics Conference. New York:ASME,2000:759-767. [26] 谷乐丰,杨桂林,方灶军,等. 一种新型机器人自标定装置及其算法[J]. 机器人,2020,42(1):100-109. GU Lefeng,YANG Guilin,FANG Zaojun,et al. The calibration algorithms for industrial robots based on a novel self-calibration device[J]. Robot,2020,42(1):100-109. [27] 陆艺,于丽梅,郭斌. 基于封闭尺寸链的工业机器人结构参数标定[J]. 仪器仪表学报,2018,39(2):38-46. LU Yi,YU Limei,GUO Bin. Calibration of industrial robot structure parameters based on closed dimensional chain[J]. Chinese Journal of Scientific Instrument,2018,39(2):38-46. [28] HAYAT A A,BOBY R A,SAHA S K. A geometric approach for kinematic identification of an industrial robot using a monocular camera[J]. Robotics and Computer-Integrated Manufacturing,2019,57:329-346. [29] 邾继贵,张楠楠,任永杰,等. 基于双目立体视觉的工业机器人在线温度补偿[J]. 光学精密工程,2018,26(9):2139-2149. ZHU Jigui,ZHANG Nannan,REN Yongjie,et al. In-line thermal compensation of industrial robots based on binocular stereo vision[J]. Optics and Precision Engineering,2018,26(9):2139-2149. [30] 解则晓,辛少辉,李绪勇,等. 基于单目视觉的机器人标定方法[J]. 机械工程学报,2011,47(5):35-39. XIE Zexiao,XIN Shaohui,LI Xuyong,et al. Method of robot calibration based on monocular vision[J]. Journal of Mechanical Engineering,2011,47(5):35-39. [31] KUO Y,LIU B,WU C. Pose determination of a robot manipulator based on monocular vision[J]. IEEE Access,2016,4:8454-8464. [32] WANG R,WU A,CHEN X,et al. A point and distance constraint based 6R robot calibration method through machine vision[J]. Robotics and Computer-Integrated Manufacturing,2020,65:101959-101965. [33] JIANG T,CUI H,CHENG X. A calibration strategy for vision-guided robot assembly system of large cabin[J]. Measurement,2020,163(1):107991- 108000. [34] ŠVACO M,ŠEKORANJA B,ŠULIGOJ F,et al. Calibration of an industrial robot using a stereo vision system[J]. Procedia Engineering,2014,69:459-463. [35] ZHANG X,SONG Y,YANG Y,et al. Stereo vision based autonomous robot calibration[J]. Robotics and Autonomous Systems,2017,93:43-51. [36] KLAUS S,STEPHEN L A,MICHAEL G. Complete,minimal and model-continuous kinematic models for robot calibration[J]. Robotics and Computer Integrated Manufacturing,1997,13(1):73-85. [37] DENAVIT J,HARTENBERG R S. A kinematic notation for lower-pair mechanisms[J]. Trans. of the Asme.journal of Applied Mechanics,1955,22:215-221. [38] GAO G,SUN G,JKIANG N,et al. Structural parameter identification for 6 DOF industrial robots[J]. Mechanical Systems and Signal Processing,2018,113:145-155. [39] 周煦武. 六自由度串联机器人静态位姿误差及其补偿研究[D]. 杭州:浙江理工大学,2019. ZHOU Xuwu. Research on static pose error and compensation of six degrees of freedom serial robot[D]. Hangzhou:Zhejiang Sci-Tech University,2019. [40] 郭瑞峰,彭光宇,杨柳,等. 基于MD-H模型的新型混联码垛机器人运动学分析与仿真[J]. 机械传动,2017,41(2):122-127. GUO Ruifeng,PENG Guangyu,YANG Liu,et al. Kinematics analysis and simulation of a new type of hybrid palletizing robot based on MD-H model[J]. Journal of Mechanical Transmission,2017,41(2):122-127. [41] XIE Z,ZONG P,YAO P,et al. Calibration of 6-DOF industrial robots based on line structured light[J]. Optik,2019,183:1166-1178. [42] LI Z,LI S,LUO X. An overview of calibration technology of industrial robots[J]. IEEE/CAA Journal of Automatica Sinica,2021,8(1):23-36. [43] STONE H,SANDERSON A. A prototype arm signature identification system[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Raleigh. Raleigh,NC,USA. 1987:175-182. [44] KAZEROUNIAN K,QIAN G Z. Kinematic calibration of robotic manipulators[J]. Journal of Mechanical Design,1989,111(4):482-487. [45] 赵艺兵,温秀兰,康传帅,等. 零参考模型用于工业机器人定位精度提升研究[J]. 仪器仪表学报,2020,41(5):76-84. ZHAO Yibing,WEN Xiulan,KANG Chuanshuai,et al. Research on improvement of industry robot positioning accuracy based on ZRM[J]. Chinese Journal of Scientific Instrument,2020,41(5):76-84. [46] ZHUANG H,ROTH Z S,HAMANO F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics and Automation,2002,8(4):451-463. [47] 张旭,郑泽龙,齐勇. 6自由度串联机器人D-H模型参数辨识及标定[J]. 机器人,2016,38(3):360-370. ZHANG Xu,ZHENG Zelong,QI Yong. Parameter identification and calibration of D-H model for 6-DOF serial robots[J]. Robot,2016,38(3):360-370. [48] 高文斌,王洪光,姜勇. 一种基于指数积的串联机器人标定方法[J]. 机器人,2013,35(2):156-161. GAO Wenbin,WANG Hongguang,JIANG Yong. A calibration method for serial robots based on POE formula[J]. Robot,2013,35(2):156-161. [49] 刘冠隆,贺晓莹,高兴宇,等. 七自由度双臂机器人旋量理论正向运动学与工作空间分析[J]. 机械科学与技术,2019,38(5):704-712. LIU Guanlong,HE Xiaoying,GAO Xingyu,et al. Forward kinematics and workspace analysis of screw theory of seven-DOF dual-arm robot[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(5):704-712. [50] URREA C,PASCAL J. Design,simulation,comparison and evaluation of parameter identification methods for an industrial robot[J]. Computers and Electrical Engineering,2018,67:791-806. [51] 张恩政,唐宁敏,陈刚,等. 基于改进IGG3权函数距离误差模型的工业机器人标定[J]. 中国机械工程,2021,565(13):1539-1546. ZHANG Enzheng,TANG Ningmin,CHEN Gang,et al. Industrial robot calibration based on improved IGG3 weight function of distance error model[J]. China Mechanical Engineering,2021,565(13):1539-1546. [52] ZHU Q,XIE X,CHAO L,et al. Kinematic self-calibration method for dual-manipulators based on optical axis constraint[J]. IEEE Access,2018,7:7768-7782. [53] 陈宵燕,张秋菊,孙沂琳. 串联机器人多模式标定与刚柔耦合误差补偿方法研究[J]. 农业机械学报,2019,50(3):396-403. CHEN Xiaoyan,ZHANG Qiuju,SUN Yilin. Multi-mode calibration and rigid-flexible coupling error compensation method of serial robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(3):396-403. [54] LUO G,ZOU L,WANG Z,et al. A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and differential evolution hybrid algorithm[J]. Robotics and Computer-Integrated Manufacturing,2021,71(1):102165-102175. [55] OMODEI A,LEGNANI G,ADAMINI R. Three methodologies for the calibration of industrial manipulators:Experimental results on a SCARA robot[J]. Journal of Robotic Systems,2000,17(6):291-307 [56] JIANG Z,ZHOU W,LI H,et al. A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm[J]. IEEE Transactions on Industrial Electronics,2018,65(4):3337-3345. [57] 刘宇,李瑰贤,夏丹,等. 基于改进遗传算法辨识空间机器人动力学参数[J]. 哈尔滨工业大学学报,2010,42(11):1734-1739. LIU Yu,LI Guixian,XIA Dan,et al. Identifying dynamic parameters of a space robot based on improved genetic algorithm[J]. Journal of Harbin Institute of Technology,2010,42(11):1734-1739. [58] WEST C,MONTAZERI A,MONK S D,et al. A genetic algorithm approach for parameter optimization of a 7-DOF robotic manipulator[J]. Ifac Papersonline,2016,49(12):1261-1266. [59] ALICI G,JAGIELSKI R,SEKERCIOGLU A,et al. Prediction of geometric errors of robot manipulators with particle swarm optimization method[J]. Robotics & Autonomous Systems,2006,54(12):956-966. [60] 刘飞. 工业机器人运动学参数辨识及误差补偿研究[D].昆明:昆明理工大学,2018. LIU Fei. Kinematics parameter identification and compensation of an industrial robot[D]. Kunming:Kunming University of Science and Technology,2018. [61] ZENG Y,TIAN W,LI D,et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology,2017,88(9-12):2745-2755. [62] 王龙飞,李旭,张丽艳,等. 工业机器人定位误差规律分析及基于ELM算法的精度补偿研究[J]. 机器人,2018,40(6):843-851. WANG Longfei,LI Xu,ZHANG Liyan,et al. Analysis of the positioning error of industrial robots and accuracy compensation based on ELM algorithm[J]. Robot,2018,40(6):843-851. [63] BAI Y. On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method[J]. The International Journal of Advanced Manufacturing Technology,2006,31(11-12):1243-1250. [64] 张湧涛,宋志伟,王一,等. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报,2016,50(10):1980-1986. ZHANG Yongtao,SONG Zhiwei,WANG Yi,et al. Robot position and rotation calibration method based on spatial mesh[J]. Journal of Zhejiang University,2016,50(10):1980-1986. [65] ALICI G,SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory,2005,40(8):879-906. [66] 周炜,廖文和,田威,等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程,2012,23(19):2306-2311. ZHOU Wei,LIAO Wenhe,TIAN Wei,et al. Robot accuracy compensation method of spatial grid for aircraft automatic assembly[J]. China Mechanical Engineering,2012,23(19):2306-2311. [67] ZHU W,QU W,CAO L,et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2013,68(9-12):2535-2545. [68] 孙剑萍,XI J,汤兆平. 近似度加权平均插值的机器人精度补偿方法研究[J]. 仪器仪表学报,2019,40(11):128-137. SUN Jianping,XI J,TANG Zhaoping. Study on robot accuracy compensation method based on approximation degree weighted average interpolation[J]. Chinese Journal of Scientific Instrument,2019,40(11):128-137. [69] WU H,TIZZANO W,ANDERSEN T T,et al. Hand-eye calibration and inverse kinematics of robot arm using neural network[J]. Advances in Intelligent Systems & Computing,2014,274:581-591. [70] NGUYEN H N,ZHOU J,KANG H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing,2015,151:996-1005. [71] WANG X,TANG Z,TAMURA H,et al. An improved backpropagation algorithm to avoid the local minima problem[J]. Neurocomputing,2004,56:455-460. [72] 周炜,廖文和,田威,等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程,2013,24(2):174-179. ZHOU Wei,LIAO Wenhe,TIAN Wei,et al. Method of industrial robot accuracy compensation method based on particle swarm optimization neural network[J]. China Mechanical Engineering,2013,24(2):174-179. [73] 周旭,鲁墨武,姜春英,等. 改进的PSO-BP算法在工业机器人末端位姿误差补偿中的应用[J]. 信息与控制,2021,50(4):505-512. ZHOU Xu,LU Mowu,JIANG Chunying,et al. Application of improved PSO-BP algorithm in the compensation of end-pose error of industrial robot[J]. Information and Control,2021,50(4):505-512. [74] LE P N,KANG H J. Robot manipulator calibration using a model based identification technique and a neural network with the teaching learning-based optimization[J]. IEEE Access,2020,8:105447-105454. [75] WANG W,TIAN W,LIAO W,et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing,2022,73(8):102220-102230. [76] 齐飞,平雪良,刘洁,等. 工业机器人误差补偿及冗余参数研究[J]. 机械设计,2017,34(2):17-22. QI Fei,PING Xueliang,LIU Jie,et al. Error compensation and parameters redundancy research of industrial robot[J]. Journal of Machine Design,2017,34(2):17-22. [77] 韩哈斯额尔敦,曾志革,刘海涛,等. 光学加工机器人定位误差测量与分析[J]. 光电工程,2017,44(5):516-522. HASIRDEN,ZENG Zhige,LIU Haitao,et al. Measurement and analyses on positioning accuracy for optical processing robots[J]. Opto-Electronic Engineering,2017,44(5):516-522. [78] 李祥云,向民志,范百兴,等. 工业机器人运动学参数标定精度分析与改进[J]. 测绘科学技术学报,2018,35(3):255-259. LI Xiangyun,XIANG Minzhi,FAN Baixing,et al. Precision analysis and improvement of kinematic parameters calibration for industrial robots[J]. Journal of Geomatics Science and Technology,2018,35(3):255-259. [79] DéPINCé P,HASCOëT J Y. Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection[J]. International Journal of Machine Tools and Manufacture,2006,46(9):945-956. [80] 齐俊德,张定华,李山,等. 工业机器人绝对定位误差的建模与补偿[J]. 华南理工大学学报,2016,44(11):113-118. QI Junde,ZHANG Dinghua,LI Shan,et al. Modeling and compensation of absolute positioning error of industrial robots[J]. Journal of South China University of Technology,2016,44(11):113-118. [81] WU G,WANG D,DONG H. Off-Line programmed error compensation of an industrial robot in ship hull welding[C]//International Conference on Intelligent Robotics and Applications. Springer,Cham,2017:135-146. [82] 王龙飞. 飞机结构机器人自动制孔的误差补偿技术[D]. 南京:南京航空航天大学,2019. WANG Longfei. Research on error compensation of industrial robots used for automatic drilling on aircraft structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [83] 陈杰. 串联机器人的误差分析及补偿方法研究[D]. 大连:大连理工大学,2020. CHEN Jie. Research on error analysis and compensation methods of serial robot[D]. Dalian:Dalian University of Technology,2020. [84] LIU B,ZHANG F,QU X. A method for improving the pose accuracy of a robot manipulator based on multi-sensor combined measurement and data fusion[J]. Sensors,2015,15(4):7933-7952. [85] 张振邦,曲兴华,张福民. PID参数对机器人在线力补偿的影响[J]. 电子测量与仪器学报,2018,32(3):142-148. ZHANG Zhenbang,QU Xinghua,ZHANG Fumin. Effect of PID parameter on online force compensation of robot[J]. Journal of Electronic Measurement and Instrumentation,2018,32(3):142-148. [86] DENKENA B,LEPPER T. Enabling an industrial robot for metal cutting operations[J]. Procedia CIRP,2015,35:79-84. [87] CVITANIC T,NGUYEN V,MELKOTE S N. Pose optimization in robotic machining using static and dynamic stiffness models[J]. Robotics and Computer-Integrated Manufacturing,2020,66:101992-102008. [88] PAN Z,ZHANG H. Improving robotic machining accuracy by real-time compensation[C]//ICROS-SICE International Joint Conference 2009 International Joint Conference,Fukuoka,2009:4289-4294. [89] 魏得权. 基于静刚度模型的机器人铣削加工误差在线补偿[D]. 武汉:华中科技大学,2019. WEI Dequan. On-line compensation of machining errors in robot milling based on static stiffness model[D]. Wuhan:Huazhong University of Science and Technology,2019. [90] CEN L,MELKOTE S N,CASTLE J,et al. A wireless force-sensing and model-based approach for enhancement of machining accuracy in robotic milling[J]. IEEE/ASME Transactions on Mechatronics,2016,21(5):2227-2235. [91] POSADA J,SCHNEIDER U,PIDAN S,et al. High accurate robotic drilling with external sensor and compliance model-based compensation[C]//International Conference on Robotics and Automation,May16-21,2016. Piscataway,NJ:IEEE,2016:3901-3907. [92] MOELLER C,SCHMIDT H C,KOCH P,et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace,2017,10(2):100-108. [93] WANG Z,ZHANG R,KEOGH P. Real-Time laser tracker compensation of robotic drilling and machining[J]. Journal of Manufacturing and Materials Processing,2020,4(3):79-104. [94] MOSQUEIRA G,APETZ J,SANTOS K M,et al. Analysis of the indoor GPS system as feedback for the robotic alignment of fuselages using laser radar measurements as comparison[J]. Robotics and Computer-Integrated Manufacturing,2012,28(6):700-709. [95] PORATH M D C,BORTONI L A F,SIMONI R,et al. Offline and online strategies to improve pose accuracy of a stewart platform using indoor-GPS[J]. Precision Engineering,2020,63:83-93. [96] STORM C,SCHöNBERG A,SCHMITT R H. Model predictive control approach for assembling large components in motion[J]. Production Engineering,2017,11(2):167-173. [97] 张华,夏菠. 基于双目视觉的机器人自定位方法研究[J].华中科技大学学报,2015,43(S1):104-108. ZHANG Hua,XIA Bo. Robot autonmouls localization method study based on binocular vision[J]. Journal of Huazhong University of Science and Technology,2015,43(S1):104-108. [98] SHU T,GHARAATY S,XIE W,et al. Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor[J]. IEEE/ASME Transactions on Mechatronics,2018,23(3):1159-1170. |
[1] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[2] | 闫巍, 郑群, 位景山, 姜斌, 丁骏. 基于工业燃机多级轴流压气机特性预测方法研究[J]. 机械工程学报, 2024, 60(8): 299-307. |
[3] | 葛磊, 倪豪, 郝云晓, 赵斌, 苑永亮, 权龙. 新型液压回转-机械直线执行器的死区补偿控制[J]. 机械工程学报, 2024, 60(8): 337-347. |
[4] | 蒋鑫池, 卢纯, 莫继良, 陈孝婷, 张庆贺, 赵婧. 考虑磨损率随温度变化的列车制动摩擦块高温磨损仿真分析[J]. 机械工程学报, 2024, 60(7): 195-202. |
[5] | 刘占广, 张云, 刘晴雨. 基于差分融合长短期记忆神经网络数控机床热误差建模[J]. 机械工程学报, 2024, 60(7): 249-257. |
[6] | 郑学斌, 韩龙帅, 李学涛, 鄂宏伟, 吴向东, 万敏. DP780双相钢U弯回弹预测影响因素研究[J]. 机械工程学报, 2024, 60(6): 197-206. |
[7] | 高凯, 罗攀, 谢进, 胡林, 陈彬, 杜荣华. 基于数据融合的混合动力汽车速度轮廓预测[J]. 机械工程学报, 2024, 60(6): 342-353. |
[8] | 刘达新, 王科, 刘振宇, 许嘉通, 谭建荣. 基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究[J]. 机械工程学报, 2024, 60(5): 36-50. |
[9] | 赵承伟, 张文豪, 龚天诚, 张逸云, 王长涛, 罗先刚. 平面光学元件超平整吸附装载的优化设计与分析[J]. 机械工程学报, 2024, 60(5): 241-248. |
[10] | 孟原, 史宝军, 张德权. Kriging-高维代理模型建模方法研究与改进[J]. 机械工程学报, 2024, 60(5): 249-263. |
[11] | 赵传军, 王冀鹏, 许立忠. 基于等效物理模型的脉冲电解微加工精度及定域性表征研究[J]. 机械工程学报, 2024, 60(5): 378-389. |
[12] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[13] | 石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81. |
[14] | 王淞立, 方续东, 高博楠, 赵立波, 田边, 林启敬, 张仲恺, 饶浩, 李瑜, 蒋庄德. 硅微谐振压力传感器自动增益控制与相位补偿研究[J]. 机械工程学报, 2024, 60(4): 82-91. |
[15] | 周宁, 姚建勇, 邓文翔. 基于神经网络的比例伺服阀阀芯液动力补偿鲁棒智能控制[J]. 机械工程学报, 2024, 60(4): 126-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||