[1] 王庆锋,卫炳坤,刘家赫,等.一种数据驱动的旋转机械早期故障检测模型构建和应用研究[J].机械工程学报,2020,56(16):22-32.WANG Qingfeng,WEI Bingkun,LIU Jiahe,et al.Research on construction and application of data-driven incipient fault detection model for rotating machinery[J]. Journal of Mechanical Engineering,2020,56(16):22-32. [2] ZHAO M,LIN J,MIAO Y,et al. Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings[J]. Measurement,2016,91:421-439. [3] 雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104.LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [4] ZHANG Z,LI S,LU J,et al. Intrinsic component filtering for fault diagnosis of rotating machinery[J]. Chinese Journal of Aeronautics,2021,34(1):397-409. [5] LEI Y,JAI F,LIN J,et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics,2016,63:3137-3147. [6] 邵海东,张笑阳,程军圣,等.基于提升深度迁移自动编码器的轴承智能故障诊断[J].机械工程学报,2020,56(9):84-90.SHAO Haidong,ZHANG Xiaoyang,CHENG Junsheng,et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering,2020,56(9):84-90. [7] 雷亚国,杨彬,杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J].机械工程学报,2019,55(7):1-8.LEI Yaguo,YANG Bin,HU Zhaoqi,et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering,2019,55(7):1-8. [8] FENG J,YAO Y,LU S,et al. Domain knowledge-based deep-broad learning framework for fault diagnosis[J].IEEE Transactions on Industrial Electronics,2021,68(4):3454-3464. [9] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J].Mechanical Systems and Signal Processing,2007,21(6):2616-2633. [10] CABRELLI C A. Minimum entropy deconvolution and simplicity:A noniterative algorithm[J]. Geophysics,1985,50(3):394-413. [11] MCDONALD G, ZHAO Q, ZUO M. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing,2012,33:237-255. [12] ANTONI J, RANDALL R. The spectral kurtosis:Application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing,2006,20(2):308-331. [13] HURLEY N, RICKARD S. Comparing measures of sparsity[J]. IEEE Transactions on Information Theory,2009,55(10):4723-4741. [14] ZHANG Z,LI S,WANG J,et al. General normalized sparse filtering:A novel unsupervised learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing,2019,124:596-612. [15] JIA X,ZHAO M,DI Y,et al. Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery[J]. Mechanical Systems and Signal Processing,2017,102:198-213. [16] JIA X,ZHAO M,BUZZA M,et al. A geometrical investigation on the generalized lp/lq norm for blind deconvolution[J]. Signal Process,2017,134:63-69. [17] ZHANG Z,LI S,XIN Y,et al. A novel compound fault diagnosis method using intrinsic component filtering[J].Measurement Science&Technology, 2020, 31(5):055103. [18] NGIAM J,KOH P W,CHEN Z H,et al. Sparse filtering[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems,2011:1125-1133. [19] ZHANG Z,LI S,LU J,et al. A novel intelligent fault diagnosis method based on fast intrinsic component filtering and pseudo-normalization[J]. Mechanical Systems and Signal Processing,2020,145:106923. [20] LEE J, QIU H,LIN J. Rexnord technical services'bearing data set'[EB/OL].[2018-04-10], IMS,University of Cincinnati. NASA Ames Prognostics Data Repository NASA AMES,Moffett Field,CA,USA. http://ti.arc.nasa.gov/project/p-rognostic-data-repository. |