[1] 李培根,高亮. 智能制造概论[M]. 北京:清华大学出版社,2021. LI Peigen,GAO Liang. Introduction to intelligent manufacturing[M]. Beijing:Tsinghua University Press,2021 [2] 陶飞,戚庆林. 面向服务的智能制造[J]. 机械工程学报,2018,54(16):11-23. TAO Fei,QI Qinglin. Service-oriented Smart Manufacturing[J]. Journal of Mechanical Engineering,2018,54(16):11-23. [3] 李新宇,李昭甫,高亮. 离散制造行业数字化转型、智能化升级路径研究[J]. 中国工程科学,2022,24(2):64-74. LI Xinyu,LI Zhaofu,GAO Liang. Research on paths for the digital transformation and intelligent upgrade of discrete manufacturing industry[J]. Strategic Study of CAE,2022,24(2):64-74. [4] KUSIAK A. Smart manufacturing must embrace big data[J]. Nature,2017,544(7648):23-25. [5] 周济. 智能制造——"中国制造2025"的主攻方向[J]. 中国机械工程,2015,26(17):2273-2284. ZHOU Ji. Intelligent manufacturing——Main direction of "Made in China 2025"[J]. China Mechanical Engineering,2015,26(17):2273-2284. [6] ZHOU Ji,LI Peigen,ZHOU Yuan,et al. Toward new-generation intelligent manufacturing[J]. Engineering,2018,4(1):11-20. [7] MUELLER E,CHEN Xiaoli,RIEDEL R. Challenges and requirements for the application of Industry 4.0:A special insight with the usage of cyber-physical system[J]. Chinese Journal of Mechanical Engineering,2017,30:1050-1057. [8] 李聪波,王睿,寇阳,等. 考虑设备预维护的柔性作业车间调度节能优化方法[J]. 机械工程学报,2021,57(10):220-230. LI Congbo,WANG Rui,KOU Yang,et al. Energy saving optimization method of flexible job shop scheduling considering preventive maintenance[J]. Journal of Mechanical Engineering,2021,57(10):220-230. [9] 刘琼,梅侦. 面向低碳的工艺规划与车间调度集成优化[J]. 机械工程学报,2017,53(11):164-174. LIU Qiong,MEI Zhen. Integrated optimization of process planning and shop scheduling for reducing manufacturing carbon emissions[J]. Journal of Mechanical Engineering,2021,57(10):220-230. [10] LI Xue,ZHANG Rufeng,BAI Linquan,et al. Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response[J]. Applied energy,2018,210:1219-1228. [11] 王凌,邓瑾,王圣尧. 分布式车间调度优化算法研究综述[J]. 控制与决策,2016,31(1):1-11. WANG Ling,DENG Jin,WANG Shengyao. Survey on optimization algorithms for distributed shop scheduling[J]. Journal of Control and Decision,2016,31(1):1-11. [12] 谢志强,周伟,余泽睿. 动态调整设备维护开始时间的综合调度算法[J]. 机械工程学报,2021,57(4):240-246. XIE Zhiqiang,ZHOU Wei,YU Zerui. Integrated scheduling algorithm for dynamic adjustment of equipment maintenance start time[J]. Journal of Mechanical Engineering,2021,57(4):240-246. [13] LI Xinyu,LU Chao,GAO Liang,et al. An effective multiobjective algorithm for energy-efficient scheduling in a real-life welding shop[J]. IEEE Transactions on Industrial Informatics,2018,14(12):5400-5409. [14] 苗宝权,陈长征,罗园庆,等. 基于自适应增强差分积形态滤波器的滚动轴承故障特征提取方法[J]. 机械工程学报,2021,57(9):78-88. MIAO Baoquan,CHEN Changzheng,LUO Yuanqing,et al. Rolling bearing fault feature extraction method based on adaptive enhanced difference product morphological filter[J]. Journal of Mechanical Engineering,2021,57(9):78-88. [15] WANG Junliang,XU Chuqiao,ZHANG Jie,et al. Big data analytics for intelligent manufacturing systems:A review[J]. Journal of Manufacturing Systems,2022,62:738-752. [16] OKWUDIRE C E,MADHYASTHA H V. Distributed manufacturing for and by the masses[J]. Science,2021,372(6540):341-342. [17] WANG Baicun,TAO Fei,FANG Xudong,et al. FREIHEIT theodor smart manufacturing and intelligent manufacturing:A comparative review[J]. Engineering,2021,7(6):738-757. [18] 罗振. 5G技术赋能离散制造业智能应用[J]. 信息通信技术,2020,14(3):12-18. LUO Zhen. 5G Technology empowers smart applications in discrete manufacturing[J]. Information and Communications Technologies,2020,14(3):12-18 [19] 陆平,李建华,赵维铎. 5G在垂直行业中的应用[J]. 中兴通讯技术,2019,25(1):67-74. LU Ping,LI Jianhua,ZHAO Weiduo. Application of 5G in vertical industry[J]. ZET Technology Journal,2019,25(1):67-74. [20] AFZAL M K,ZIKRIA Y B,MUMTAZ S,et al. Unlocking 5G spectrum potential for intelligent IoT:Opportunities,challenges,and solutions[J]. IEEE Communications Magazine,2018,56(10):92-93. [21] 史彦军,韩俏梅,沈卫明,等. 智能制造场景的5G应用展望[J]. 中国机械工程,2020,31(2):227-236. SHI Yanjun,HAN Qiaomei,SHEN Weiming,et al. 5G applications of intelligent manufacturing scenarios[J]. China Mechanical Engineering,2020,31(2):227. [22] GAO Yiping,GAO Liang,LI Xinyu. A hierarchical training-convolutional neural network with feature alignment for steel surface defect recognition[J]. Robotics and Computer-Integrated Manufacturing,2023,81:102507. [23] GAO Yiping,GAO Liang,LI Xinyu,et al. A hierarchical training-convolutional neural network for imbalanced fault diagnosis in complex equipment[J]. IEEE Transactions on Industrial Informatics,2022,18(11):8138-8145. [24] QU Youyang,POKHREL S R,GARG S,et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics,2020,17(4):2964-2973. |