• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (6): 1-9.doi: 10.3901/JME.2023.06.001

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

保证数据隐私的装备协同智能故障诊断联邦迁移学习方法

李响, 付春霖, 雷亚国, 李乃鹏, 杨彬   

  1. 西安交通大学现代设计与转子轴承系统教育部重点实验室 西安 710049
  • 收稿日期:2022-05-22 修回日期:2022-10-15 出版日期:2023-03-20 发布日期:2023-06-03
  • 通讯作者: 李乃鹏(通信作者),男,1991年出生,助理教授。主要研究方向为机械装备剩余寿命预测等。E-mail:naipengli@mail.xjtu.edu.cn
  • 作者简介:李响,男,1990年出生,副教授,特聘研究员,博士研究生导师。主要研究方向为工业人工智能、工业大数据、智能故障诊断与预测等。
  • 基金资助:
    国家自然科学基金(52005086)、压缩机技术国家重点实验室(压缩机技术安徽省实验室)开放基金(SKL-YSJ202104)和中央高校基本科研业务费(xzy012022062)资助项目。

Federated Transfer Learning Method for Privacy-preserving Collaborative Intelligent Machinery Fault Diagnostics

LI Xiang, FU Chunlin, LEI Yaguo, LI Naipeng, YANG Bin   

  1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049
  • Received:2022-05-22 Revised:2022-10-15 Online:2023-03-20 Published:2023-06-03

摘要: 大数据驱动的机械装备智能故障诊断方法在近年来取得了显著的成果,当前良好的诊断效果主要依赖于大量有标注的状态监测数据以中心化的方式训练模型,然而在实际工程问题中,单一用户往往难以收集充足的高质量训练数据,因此智能诊断方法的实际应用仍存在巨大困难。在工业界,多个用户往往拥有相似的机械装备与各自收集的监测数据,因此联合多用户协同进行故障诊断建模能够良好解决数据稀缺问题。然而,数据隐私性至关重要,不同用户往往不愿将私有数据与其他用户共享,给协同建模带来巨大挑战。提出保证数据隐私的装备协同智能故障诊断方法FedTL,各用户私有数据不出本地完成模型训练,多用户间传输共享数据高级表征;提出软标签信息传输方法,通过捕捉共享数据不同故障模式关系实现对私有数据诊断知识的传递;考虑多用户装备工况不同等场景,提出联邦迁移学习方法。通过轴承状态监测试验对所提方法进行验证,结果表明所提方法能够保证数据隐私良好完成多用户协同智能故障诊断。

关键词: 机械装备, 故障诊断, 数据隐私, 联邦学习, 迁移学习

Abstract: Big data-driven intelligent machinery fault diagnosis methods have achieved great success in the recent years. The high diagnosis accuracies mostly rely on large amounts of labeled condition monitoring data and centralized model training. However, in the real industries, it is usually difficult for a single user to collect sufficient labeled data, that makes the intelligent diagnosis methods less applicable in practice. It is noted that different industrial users may have similar machines and condition monitoring data. Therefore, collaborative model development is promising to address the data scarcity problem. However, data privacy is very important and different users are generally not comfortable sharing private data with others, that results in a challenging collaborative diagnosis problem. A privacy-preserving collaborative intelligent machine fault diagnosis method FedTL is proposed. The private data are used for training without leaving local storage. The high-level representations of shared data are communicated among different users. A soft label-based information transmission method is proposed. Through capturing the relationship between different fault modes of shared data, the diagnosis knowledge of private data can be well delivered. The federated transfer learning framework is formulated, considering different working conditions of different users. The experiments in bearing condition monitoring cases validate the proposed method. The results show the proposed method is a promising tool for privacy-preserving collaborative machine fault diagnosis.

Key words: machinery, fault diagnosis, data privacy, federated learning, transfer learning

中图分类号: