[1] ZOU Ting,SHAKER M,ANGELES J,et al. An innovative tooth root profile for spur gears and its effect on service life[J]. Meccanica,2017,52(8):1825-1841. [2] LU Zehua,LIU Huaiju,WEI Peitang,et al. The effect of injection molding lunker defect on the durability performance of polymer gears[J]. International Journal of Mechanical Sciences,2020,180:105665. [3] OLSSON E,OLANDER A,BERG M. Fatigue of gears in the finite life regime-Experiments and probabilistic modelling[J]. Engineering Failure Analysis,2016,62:276-286. [4] LEWIS W. Investigation of the strength of gear teeth[J]. Proceedings of Engineers Club,Philadelphia,1893,16:10. [5] 王明旭,李永祥,秦超,等. A35CrNiMo感应淬火齿 轮弯曲疲劳强度试验[J]. 机械设计与研究,2018,34(6):74-77,87. WANG Mingxu,LI Yongxiang,QIN Chao,et al. Experimental study on bend fatigue strength of induction hardened gears of a35crnimo[J]. Machine Design and Research,2018,34(6):74-77,87. [6] GORLA C,ROSA F,CONRADO E,et al. Bending and contact fatigue strength of innovative steels for large gears[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2014,228(14):2469-2482. [7] 张民,王忠,冯显磊,等. 20CrMnTi钢齿轮疲劳寿命研究[J]. 热处理,2017,32(6):9-12. ZHANG Min,WANG Zhong,FENG Xianlei,et al. Research on fatigue life of 20CrMnTi steel gear[J]. Heat Treatment,2017,32(6):9-12. [8] MENEGHETTI G,DENGO C,CONTE F. Bending fatigue design of case-hardened gears based on test specimens[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,232(11):1953-1969. [9] STRINGER D,DYKAS B,LABERGE K,et al. A new high-speed,high-cycle,gear-tooth bending fatigue test capability[C/CD]//The American Helicopter Society,2011,Annual Forum. [10] HONG I,KAHRAMAN A,ANDERSON N. A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions[J]. International Journal of Fatigue,2020,133:105432.1-105432.11. [11] GHAFFARI M,PAHL E,XIAO S. Three dimensional fatigue crack initiation and propagation analysis of a gear tooth under various load conditions and fatigue life extension with boron/epoxy patches[J]. Engineering Fracture Mechanics,2015,135:126-146. [12] 李刚. 高速动车组齿轮箱斜齿轮副弯曲疲劳寿命仿真分析[D]. 太原:太原理工大学,2017. LI Gang. Bending fatigue life simulation analysis of helical gear pair of high-EMU gearbox[D]. Taiyuan:Taiyuan University of Technology,2017. [13] Lin Yulong,Liu Shourong,Zhao Xueyan,et al. Fatigue life prediction of engaging spur gears using power density[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2018,232(23):4332-4341. [14] 王雯雯. 某地铁齿轮箱齿轮弯曲疲劳试验与仿真研究[D]. 北京:北京建筑大学,2017. WANG Wenwen. Research on bending fatigue test and simulation of a metro gear[D]. Beijing:Beijing University of Civil Engineering and Architecture,2017. [15] BONAITI L,BAYOUMI A,CONCLI F,et al. Gear root bending strength:A comparison between single tooth bending fatigue tests and meshing gears[J]. Journal of Mechanical Design,2021,143(10):1-17. [16] 李贞子,何才,王云龙,等. 20CrMoH齿轮弯曲疲劳强度研究[J]. 汽车工艺与材料,2011(9):21-24. LI Zhenzi,HE Cai,WANG Yunlong,et al. The study of bending fatigue strength of 20CrMoH gear[J]. Automobile Technology and Material,2011(9):21-24. [17] WINKLER K,SCHURER S,TOBIE T,et al. Investigations on the tooth root bending strength and the fatigue fracture characteristics of case-carburized and shot-peened gears of different sizes[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2019,233(21-22):7338-7349. [18] SHAW B. The role of residual stress on the fatigue strength of high performance gearing[J]. International Journal of Fatigue,2003,25(9-11):1279-1283. [19] SAVARIA V,BRIDIER F,BOCHER P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears[J]. International Journal of Fatigue,2016,85:70-84. [20] WANG Wei,LIU Huaiju,ZHU Caichao,et al. Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multiaxial fatigue criteria[J]. International Journal of Mechanical Sciences,2019,151:263-273. [21] HE Haifeng,LIU Huaiju,ZHU Caichao,et al. Study on the gear fatigue behavior considering the effect of residual stress based on the continuous damage approach[J]. Engineering Failure Analysis,2019,104:531-544. [22] WANG Wei,LIU Huaiju,ZHU Caichao,et al. Evaluation of rolling contact fatigue of a carburized wind turbine gear considering the residual stress and hardness gradient[J]. Journal of Tribology-Transactions of the ASME,2018,140(6):061401. [23] 王伟,唐良芬,倪佳俊,等. 42CrMo齿轮渗氮处理R-S-N弯曲疲劳性能研究[J]. 金属加工(热加工),2018(11):54-57. WANG Wei,TANG Liangfen,NI Jiajun,et al. Study on R-S-N bending fatigue properties of 42CrMo gear nitriding treatment[J]. MW Metal Forming,2018(11):54-57. [24] HE Haifeng,LIU Huaiju,ZHU Caichao,et al. Study of rolling contact fatigue behavior of a wind turbine gear based on damage-coupled elastic-plastic model[J]. International Journal of Mechanical Sciences,2018,141:512-519. [25] BASQUIN O. The exponential law of endurance test[J]. Proceedings of the American Society for Testing and Material,1910(10):625-630. [26] COFFIN L. Study of the effect of cyclic thermal stresses on a ductile metal[J]. Transactions of the ASME,1954,76:931-950. [27] BAUMEL A,SEEGER T. Materials data for cyclic loading-supplement 1[M]. New York:Elsevier Science Publishing Company,1990. [28] SMITH K,WATSON P,TOPPER T. A stress-strain function for the fatigue of metals[J]. Journal of Materials,1970,5(4):767-778. |