[1] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京:科学出版社, 2010. CHEN Guobang, TANG Ke. The principle of miniature refrigerator[M]. Beijing:Science Press, 2010. [2] NGUYEN T V, RAAB J, DURAND D, et al. Small high cooling power space cooler[C]//AIP Conference Proceedings, 2014, 1573(1):365-370. [3] RAAB J, TWARD E. Northrop Grumman aerospace systems cryocooler overview[J]. Cryogenics, 2010, 50(9):572-581. [4] TWARD E. High efficiency cryocooler[C]//AIP Conference Proceedings, 2002, 613(1):1077-1084. [5] GROEP V, MULLIE J C, WILLEMS D W J. Development of a 15W coaxial pulse tube cooler[J]. Cryocoolers, 2009, 15:157-176. [6] WILLEMS D, MULLIÉ J, GROEP V, et al. Increased capacity cryocoolers at Thales cryogenics BV[C]//AIP Conference Proceedings, 2010, 1218(1):719-726. [7] OLSON J, CHAMPAGNE P, ROTH E, et al. Very high capacity aerospace cryocooler[C]//AIP Conference Proceedings, 2012, 1434(1):161. [8] KRANTHI KUMAR J, JACOB S, KARUNANITHI R, et al. Design and component development of a 17 l/d liquefier for helium recondensation[C]//IOP Conference Series:Materials Science and Engineering, 2019, 502(1):012010. [9] 刘欣彤. 9 W@80 K级大冷量同轴型脉冲管制冷机研究[D]. 北京:中国科学院大学, 2014. LIU Xintong. Research on 9 W at 80 K coaxial pulse tube refrigerator with large cooling capacity[D]. Beijing:University of Chinese Academy of Science, 2014. [10] 王乃亮, 赵密广, 陈厚磊, 等. 13W@80K空间大冷量脉冲管制冷机的模拟设计与试验验证[J]. 机械工程学报, 2018, 54(6):175-181. WANG Nailiang, ZHAO Miguang, CHEN Houlei, et al. Simulation design and experimental verification of 13W at 80K space high cooling capacity pulse tube cooler[J]. Journal of Mechanical Engineering, 2018, 54(6):175-181. [11] WANG N L, ZHAO M G, LIU X T, et al. Development of a 15 W at 80 K coaxial pulse tube cryocooler[C]//International Cryocooler Conference, 2018:155-159. [12] LIU S S, CHEN X, ZHANG A K, et al. Investigation on phase shifter of a 10 W/70 K inertance pulse tube refrigerator[J]. International Journal of Refrigeration, 2017, 74:448-455. [13] ZHA R, ZHANG T, LI J Q, et al. CFD modeling and experimental verifications of a four-stage Stirling-type pulse tube cryocooler[C]//IOP Conference Series Materials Science and Engineering, 2019, 502(1):012037. [14] 熊超, 习中立, 许红, 等. 10W/80K高频同轴脉冲管制冷机的实验性能[J]. 低温工程, 2017(3):34-37. XIONG Chao, XI Zhongli, XU Hong, et al. Experimental performance of a 10W/80K high frequency coaxial pulse tube cryocooler[J]. Cryogenics, 2017(3):34-37. [15] ZHANG Y B, LI H B, WANG X T, et al. Advances in a high efficiency commercial pulse tube cooler[C]//IOP Conference, 2017:278. [16] GIFFORD W E, LONGSWORTH R C. Pulse tube refrigerator[J]. ASME Series B, 1964:264-268. [17] LIANG J, RAVEX A, ROLLAND P. Study on pulse tube refrigeration Part 1:Thermodynamic nonsymmetry effect[J]. Cryogenics, 1996, 36(2):87-93. [18] LIANG J, RAVEX A, ROLLAND P. Study on pulse tube refrigeration Part 2:Theoretical modelling[J]. Cryogenics, 1996, 36(2):95-99. [19] LIANG J, RAVEX A, ROLLAND P. Study on pulse tube refrigeration Part 3:Experimental verification[J]. Cryogenics, 1996, 36(2):101-106. [20] GIFFORD W E, LONGSWORTH R C. Surface heat pumping[M]//Advances in Cryogenic Engineering. Boston:Springer, 1966:171-199. [21] RADEBAUGH R, LOUIE B, SMITH D R, et al. A comparison of three types of pulse tube refrigerators-New methods for reaching 60 K[M]. New York:Springer, 1986. [22] 陈厚磊. 高频微型脉冲管制冷机内部气体交变流动特性及制冷机样机的研究[D]. 北京:中国科学院, 2008. CHEN Houlei. Study on the characteristics of gas alternating flow in high frequency micro pulse tube refrigerator and its prototype[D]. Beijing:Chinese Academy of Sciences, 2008. |