[1] YUE X. Developments of joint elements and solution algorithms for dynamic analysis of jointed structures[D]. United States-Colorado:University of Colorado at Boulder, 2002. [2] 王世军, 赵金娟. 机械工程中的有限元方法[M]. 北京:科学出版社, 2019. WANG Shijun, ZHAO Jinjuan. Finite element method in mechanical engineering[M]. Beijing:Science Press, 2019. [3] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London, 1966, 295(1442):300-319. [4] HERTZ H. On the contact of elastic solid[J]. J. Reineund Angewandte Mathematik, 1882, 92:156-171. [5] GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1):625-633. [6] WHITEHOUSE D J, ARCHARD J F. The properties of random surfaces of significance in their contact[J]. Proceedings of the Royal Society of London, 1970, 316(1524):97-121. [7] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1):300-319. [8] ONIONS R A, ARCHARD J F. The contact of surfaces having a random structure[J]. Journal of Physics D, 2002, 6(3):289-304. [9] CARBONE G. A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(7):1093-1102. [10] CHANG W R, ETSION I, BOGY D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2):257-263. [11] ZHAO Y, MAIETTA D M, CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1):86-93. [12] KADIN Y, KLIGERMAN Y, ETSION I. Unloading an elastic-plastic contact of rough surfaces[J]. Journal of the Mechanic & Physics of Solid, 2006, 54(12):2652-2674. [13] GORBATIKH L, POPOVA M. Modeling of a locking mechanism between two rough surfaces under cyclic loading[J]. International Journal of Mechanical Sciences, 2006, 48(9):1014-1020. [14] WANG G F, LONG J M, FENG X Q. A self-consistent model for the elastic contact of rough surfaces[J]. Acta Mechanica, 2014, 226(2):285-293. [15] TANG Z C, JIAO Y Y, WONG N Y. Theoretical model with multi-asperity interaction for the closure behavior of rock joint[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 97:15-23. [16] CIAVARELLA M, GREENWOOD J A, PAGGI M. Inclusion of "interaction" in the Greenwood and Willamson contact theory[J]. Wear, 2008, 265(5-6):729-734. [17] 王润琼, 朱立达, 朱春霞. 基于域扩展因子和微凸体相互作用的结合面接触刚度模型研究[J]. 机械工程学报, 2018, 54(19):88-95. WANG Runqiong, ZHU Lida, ZHU Chunxia. Investigation of contact stiffness model for joint surfaces based on domain expansion factor and asperity interaction[J]. Journal of Mechanical Engineering, 2018, 54(19):88-95. [18] 张伟, 张学良, 温淑花, 等. 考虑微凸体基体变形和相互作用的结合面法向接触刚度模型[J]. 西安交通大学学报, 2020, 54(6):115-121. ZHANG Wei, ZHANG Xueliang, WEN Shuhua, et al. A normal contact stiffness model of joint surfaces considering interaction of deformations of substrate and asperity[J]. Journal of Xi'an Jiaotong University, 2020, 54(6):115-121. [19] 王庆朋, 张力, 陈斌, 等. 考虑微凸体相互作用的确定性接触模型[J]. 西安交通大学学报, 2018, 52(3):91-97. WANG Qingpeng, ZHANG Li, CHEN Bin, et al. A deterministic contact model considering the interaction between asperities[J]. Journal of Xi'an Jiaotong University, 2018, 52(3):91-97. [20] 张利华. 考虑微凸体相互作用的各向异性粗糙表面接触特性研究[D]. 西安:西安理工大学, 2020. ZHANG Lihua. Study on the contact characteristics of anisotropic rough surfaces considering the interaction of asperities[D]. Xi'an:Xi'an University of Technology, 2020. [21] 高志强. 机械结合面接触刚度及阻尼的理论模型研究[D]. 西安:西安理工大学, 2018. GAO Zhiqiang. Research on theoretical model of contact stiffness and damping of mechanical joint[D]. Xi'an:Xi'an University of Technology, 2018. [22] JOHNSON K L. Contact mechanic[M]. Cambridge:Cambridge University Press, 1985. [23] 田禹. 基于偏度和峰度的正态性检验[D]. 上海:上海交通大学, 2012. TIAN Yu. Normality test based on skewness and kurtosis[D]. Shanghai:Shanghai Jiaotong University, 2012. [24] 邱皓政. 量化研究与统计分析[M]. 重庆:重庆大学出版社, 2009. QIU Haozheng. Quantitative research and statistical analysis[M]. Chongqing:Chongqing University Press:2009. [25] 高志强, 傅卫平, 王雯, 等. 弹塑性微凸体侧向接触相互作用能耗[J]. 力学学报, 2017, 49(4), 858-869. GAO Zhiqiang, FU Weiping, WANG Wen, et al. Energy consumption of lateral contact interaction of elastoplastic asperities[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):858-869. [26] 陈剑, 张进华, 朱林波, 等. 粗糙表面弹塑性微接触模型分析与改进[J]. 浙江大学学报, 2019, 53(9):1674-1680. CHEN Jian, ZHANG Jinhua, ZHU Linbo, et al. Analysis and improvement on elastic-plastic micro-contact model of rough surface[J]. Journal of Zhejiang University, 2019, 53(9):1674-1680. [27] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 67(5):657-662. [28] 王雯, 吴洁蓓, 傅卫平, 等. 机械结合面法向动态接触刚度理论模型与试验研究[J]. 机械工程学报, 2016, 52(13):123-130. WANG Wen, WU Jiebei, FU Weiping, et al. Theoretical and experimental research on normal dynamic contact stiffness of machined joint surfaces[J]. Journal of Mechanical Engineering, 2016, 52(13):123-130. [29] 赵金娟, 王世军, 杨超, 等. 基于横观各向同性假定的固定结合部本构关系及有限元模型[J]. 中国机械工程, 2016, 27(8):1007-1011. ZHAO Jinjuan, WANG Shijun, YANG Chao, et al. A constitutive law based on transverse isotropic hypothesis andfinite element model of fixed joint[J]. China Mechanical Engineering, 2016, 27(8):1007-1011. [30] 田红亮, 刘芙蓉, 方子帆, 等. 引入各向同性虚拟材料的固定结合部模型[J]. 振动工程学报, 2013, 26(4):561-573. TIAN Hongliang, LIU Furong, FANG Zifan, et al. Introducing the fixed joint model of isotropic virtual material[J]. Journal of Vibration Engineering, 2013, 26(4):561-573. [31] BUSH A W, GIBSON R D, THOMAS T R. The elastic contact of a rough surface[J]. Wear, 1975, 35(1):87-111. [32] NAYAK P R. Random process model of rough surfaces[J]. Journal of Tribology, 1971, 93(3):398-407. [33] MCCOOL J I. Predicting microfracture in ceramics via a microcontact model[J]. Journal of Tribology, 1986, 108(3):380-385. [34] 李志涛, 王世军, 韩子锐, 等. 应用改进分形理论及连续变形理论的机械结合面切向刚度建模[J]. 西安交通大学学报, 2020, 54(6):107-114. LI Zhitao, WANG Shijun, HAN Zirui, et al. Modeling of tangential stiffness of mechanical joint surface based onimproved fractal theory and continuous deformation theory[J]. Journal of Xi'an Jiaotong University, 2020, 54(6):107-114. |