• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (16): 420-429.doi: 10.3901/JME.2022.16.420

• 交叉与前沿 • 上一篇    下一篇

扫码分享

基于RMQGS-APS-Kriging的主动学习结构可靠性分析方法

智鹏鹏1,2, 汪忠来1, 李永华3, 田宗睿3   

  1. 1. 电子科技大学机械与电气工程学院 成都 611731;
    2. 电子科技大学广东电子信息工程研究院 东莞 523808;
    3. 大连交通大学机车车辆工程学院 大连 116028
  • 收稿日期:2021-09-01 修回日期:2022-05-01 出版日期:2022-08-20 发布日期:2022-11-03
  • 通讯作者: 汪忠来(通信作者),男,1980年出生,博士,教授,博士研究生导师。主要研究方向为可靠性设计、稳健设计、模型验证。E-mail:wzhonglai@uestc.edu.cn
  • 作者简介:智鹏鹏,男,1989年出生,博士,助理研究员。主要研究方向为韧性设计、机电装备结构/疲劳可靠性、不确定性分析与优化。E-mail:zhipeng17@yeah.net
  • 基金资助:
    广东省基础与应用基础研究基金(2021A1515110308)、四川省杰出青年科技人才(2020JDJQ0036)和四川省自然科学基金(2022NSFSC1941)资助项目

RMQGS-APS-Kriging-based Active Learning Structural Reliability Analysis Method

ZHI Pengpeng1,2, WANG Zhonglai1, LI Yonghua3, TIAN Zongrui3   

  1. 1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731;
    2. Institute of Electronic and Information Engineering in Guangdong, University of Electronic Science and Technology of China, Dongguan 523808;
    3. School of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028
  • Received:2021-09-01 Revised:2022-05-01 Online:2022-08-20 Published:2022-11-03

摘要: 为兼顾具有黑箱问题的机械产品结构可靠性分析精度和效率,提出一种基于随机移动四边形网格抽样(Random moving quadrilateral grid sampling, RMQGS)和交替加点策略(Alternate point strategy, APS)的Kriging(RMQGS-APS-Kriging)主动学习结构可靠性分析方法。采用RMQGS方法选择初始样本点并计算其真实性能函数值,结合差分进化算法(Differential evolution, DE),获得高精度优化Kriging代理模型;通过欧式距离构造抽样限定区域,确定交替加点的样本选取范围,依据迭代次数采用主动学习U函数和改进EI(Improved EI, IEI)函数交替筛选最佳样本点,并加入到每次迭代的样本库以更新优化Kriging代理模型;利用子集模拟(Set simulation, SS)方法对迭代过程中优化Kriging代理模型拟合的性能函数进行可靠度计算,并通过收敛准则确定最终的结构可靠度。算例分析表明,与传统基于代理模型的可靠度计算方法相比,所提方法具有较强的局部和全局性能函数拟合能力,能够以较少的性能函数调用次数和可靠度计算时间精确估算失效概率。

关键词: 结构可靠性, Kriging代理模型, 主动学习, 子集模拟

Abstract: In order to take into account the accuracy and efficiency of structural reliability analysis of mechanical products with black box problems, a novel Kriging method named RMQGS-APS-Kriging for active learning structural reliability analysis based on random moving quadrilateral grid sampling (RMQGS) and alternate point strategy (APS) is proposed. The RMQGS method is used to select the initial sampling points and estimate the real performance function. Combined with the differential evolution (DE) method, the Kriging-based surrogate model with high accuracy is obtained. Through Euclidean distance, the sampling limited area is constructed to determine the sample selection range of alternate points. According to the number of iterations, the active learning U function and the improved EI (IEI) function are employed to alternately select the best sampling points, which are added to the sample database of each iteration to update the optimized Kriging surrogate model. The subset simulation (SS) method is then used to calculate the reliability of the performance function fitted by the optimized Kriging surrogate model in the iterative process, and the final structural reliability is determined by convergence criteria. The examples analysis show that compared with traditional surrogate model-based reliability calculation methods, the proposed method has stronger local and global performance function fitting ability, and can estimate the exact failure probability with less times of performance function calls and reliability calculation time.

Key words: structural reliability, Kriging surrogate model, active learning, subset simulation

中图分类号: