• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (11): 295-307.doi: 10.3901/JME.2022.11.295

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

转印掩膜电解加工宏量金属微结构

申继文, 明平美, 张新民, 牛屾, 夏亚坤, 张云燕, 王伟, 李冬冬   

  1. 河南理工大学机械与动力工程学院 焦作 454000
  • 收稿日期:2021-08-24 修回日期:2022-01-22 出版日期:2022-06-20 发布日期:2022-08-08
  • 通讯作者: 明平美(通信作者),男,1974年出生,教授,博士研究生导师。主要研究方向为特种加工技术。E-mail:mingpingmei@163.com
  • 作者简介:申继文,男,1995年出生,博士研究生。主要研究方向为微细电解加工技术。E-mail:sjwintme@163.com
  • 基金资助:
    国家自然科学基金(51875178)、中原科技创新领军人才计划(214200510018)和河南省重点科技攻关项目(202102210069)资助项目

Fabrication of Massive Metal Microstructures by Rotating Through-mask Electrochemical Transferring Technology

SHEN Jiwen, MING Pingmei, ZHANG Xinmin, NIU Shen, XIA Yakun, ZHANG Yunyan, WANG Wei, LI Dongdong   

  1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000
  • Received:2021-08-24 Revised:2022-01-22 Online:2022-06-20 Published:2022-08-08

摘要: 金属宏量微结构的高效、高质量、整体无接缝电化学加工至今仍面临重大技术挑战。对此,提出了转印掩膜电解加工技术,以滚动印制方式克服传统面对面静印式掩膜电解加工在制备金属微结构方面的局限性和不足。数值仿真分析了新技术加工微坑结构过程中的电场分布特性及其时空变化规律、廓形演变规律,开展了阵列微结构制备的试验研究,探究了主要工艺参数对阵列微结构表面与几何轮廓特征、成形精度等的影响,评测了在平面和圆柱面工件上加工宏量微结构的工艺效果。结果表明:转印掩膜电解加工时,阳极、阴极和掩膜虽均处于运动状态,但是各加工微区的电场时空分布保持较高的一致性,且其轮廓演变过程与最终廓形特征主要受工件旋转速度、极间电压的影响;基于优选工艺参数,在不锈钢圆柱面和平面上均能高效加工出廓形特征一致性高的宏量阵列微坑/微孔结构,360°圆柱面上2 266个深度89 μm的阵列微坑用时仅250 s,直径和深度CV值分别低至3.21%和3.68%,表面粗糙度Ra小于0.65 μm,加工平面分布8 360个深度50 μm的阵列微孔用时仅460 s,其直径CV值低至2.19%,入口与出口直径偏差仅1.06%~3.22%。转印掩膜电解加工技术在圆柱面和大尺寸(超长、宽幅)平面工件上高效、高精度制备微结构方面具有很强工艺能力与发展潜能。

关键词: 转印掩膜电解加工, 掩膜电解加工, 宏量微结构, 阵列微坑, 阵列微孔

Abstract: Cost-effective electrochemical fabrication of a vast number of high-quality metal microstructures without patterned seams by has still faced great challenge. A novel rotating through-mask electrochemical transferring technology (RTM-ECT) is proposed, in which the microstructures are fabricated in a rotary electrochemical etching manner that overcomes some inherent disadvantages and limitations of the traditional face-to-face through-mask electrochemical machining processes. Electric field distribution characteristics and their spatial evolution with time, geometric profile evolution of the forming microstructures was investigated via numerical simulations. Experimental studies in which the effect of key process parameters on surface morphologies, geometric profile change and machining accuracy were carried out, followed by evaluation on effect of fabricating massive arrayed metal microstructures on the cylindrical and planar workpiece. The results showed that, the temporal and spatial distribution characteristics of the electric field over individual active machining area are nearly the same although the anode, cathode and through-mask of RTM-ECT are in motion, and the geometric profile evolution and the final geometric profile of the microstructures are mainly controlled by the rotational speed and interelectrode voltage; by using the optimized process parameters, massive arrayed microdimples and arrayed micro-holes with significantly consistent geometric profiles can be fabricated both on the cylindrical and on the planar stainless-steel workpiece. Fabricating 2 266 microdimples (89 μm in depth) evenly distributed on the entire cylindrical surface (360°) takes only 125 seconds, with their coefficient of variation (CV) values of diameter and depth being down to 3.21% and 3.68%, respectively, and their surface roughness Ra being less than 0.65 μm. Fabricating 8 360 micro-holes (50 μm in depth) on the planar workpiece takes only 460 seconds, with their diameter CV values being down to 2.19%, and the diameter deviation between inlet and outlet being only 1.06%-3.22%. The newly proposed RTM-ECT shows a significant and promising potential competitiveness in cost-effectively fabricating high-quality and high-precision microstructures on the cylindrical and planar (ultra-long, large-area) metal workpiece.

Key words: rotating through-mask electrochemical transferring, through-mask electrochemical machining, massive microstructures, arrayed microdimple, arrayed micro-hole

中图分类号: