• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (5): 98-107.doi: 10.3901/JME.2022.05.98

• 机械动力学 • 上一篇    下一篇

扫码分享

典型因素对无网格压缩波束形成声源识别的影响

杨洋1,2, 褚志刚1, 杨咏馨1   

  1. 1. 重庆大学机械与运载工程学院 重庆 400044;
    2. 重庆工业职业技术学院车辆工程学院 重庆 401120
  • 收稿日期:2021-05-07 修回日期:2021-11-22 出版日期:2022-03-05 发布日期:2022-04-28
  • 通讯作者: 褚志刚(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为振动噪声测量分析技术、数字信号处理、噪声源识别技术理论及应用。E-mail:zgchu@cqu.edu.cn E-mail:zgchu@cqu.edu.cn
  • 作者简介:杨洋,女,1988年出生,博士研究生,副教授。主要研究方向为噪声源识别技术理论及应用、工程信号处理。E-mail:yangyang911127@cqu.edu.cn;杨咏馨,女,1995年出生,博士研究生。主要研究方向为噪声源识别技术理论及应用、工程信号处理。E-mail:yongxinyang@cqu.edu.cn
  • 基金资助:
    重庆市教育委员会科学技术研究项目(KJQN202003206);国家自然科学基金(11874096)资助项目。

Influence of Typical Factors on Acoustic Source Identification of Grid-free Compressive Beamforming

YANG Yang1,2, CHU Zhi-gang1, YANG Yong-xin1   

  1. 1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    2. Faculty of Vehicle Engineering, Chongqing Industry Polytechnic College, Chongqing 401120
  • Received:2021-05-07 Revised:2021-11-22 Online:2022-03-05 Published:2022-04-28

摘要: 基于传声器阵列测量和压缩感知理论且将目标声源区域看作连续体处理的无网格压缩波束形成声源识别方法在军事、工业、环境等领域具有良好应用前景。采用蒙特卡罗数值模拟和验证试验探究声源相干性、声源最小分离、噪声干扰和数据快拍数目四个典型因素对声源识别性能的影响,结果表明:该方法适用于任意相干性声源和任意数据快拍数目;高概率获得准确结果的条件是声源足够分离(采用矩形阵列时,单数据快拍下,通常要求声源最小分离不小于1/√AB, AB分别为矩形阵列的行数和列数)和噪声干扰不过强(单数据快拍下,通常要求信噪比优于 15 d B);声源不完全相干时,增多数据快拍降低对声源分离和噪声干扰强度的要求,声源完全相干时,增多数据快拍仅降低对噪声干扰强度的要求。典型因素影响的揭示对无网格压缩波束形成方法的恰当运用及声源识别结果的正确分析具有重要指导意义。

关键词: 声源识别, 无网格压缩波束形成, 典型因素, 影响

Abstract: Based on microphone array measurement and compressive sensing theory, the grid-free compressive beamforming acoustic source identification method, which treats the target area as a continuum, has good application prospects in military, industrial,environmental and other fields. Monte Carlo simulation and validation experiment are used to investigate the effects of four typical factors (source coherence, the minimum separation of sources, noise interference and the number of data snapshots) on the performance of grid-free compressive beamforming. The results show that this method is suitable for sources with arbitrary coherence and data with any number of snapshots; the conditions to obtain accurate results with high probability is that the sources are sufficiently separate (with a rectangular array and single data snapshot, the minimum separation of sources is usually required to be not less than 1/√AB, where A and B are the number of rows and columns of the rectangular array, respectively) and the noise interference is not strong (with single data snapshot, the signal-to-noise ratio is usually required to be better than 15 d B); when the sources are not completely coherent, increasing the data snapshot will relax the requirements for source separation and the intensity of noise interference; when the sources are completely coherent, increasing the data snapshot will only relax the requirement for the intensity of noise interference. The disclosure of the influence of typical factors is of guiding significance in the proper application of grid-free beamforming and the correct analysis of the results of acoustic source identification.

Key words: acoustic source identification, grid-free compressive beamforming, typical factors, influence

中图分类号: