[1] XU T,YU J,VONG C I,et al. Dynamic morphology and swimming properties of rotating miniature swimmers with soft tails[J]. IEEE/ASME Transactions on Mechatronics,2019,24(3):924-934. [2] LI T,CHANG X,WU Z,et al. Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments[J]. ACS Nano,2017,11(9):9268-9275. [3] WU Z,LI T,GAO W,et al. Cell-membrane-coated synthetic nanomotors for effective biodetoxification[J]. Advanced Functional Materials,2015,25(25):3881-3887. [4] CHENG R,HUANG W,HUANG L,et al. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors[J]. ACS Nano,2014,8(8):7746-7754. [5] XU L,MOU F,GONG H,et al. Light-driven micro/nanomotors:From fundamentals to applications[J]. Chemical Society Reviews,2017,46(22):6905-6926. [6] MEI Y,SOLOVEV A A,SANCHEZ S,et al. Rolled-up nanotech on polymers:From basic perception to self-propelled catalytic microengines[J]. Chemical Society Reviews,2011,40(5):2109-2119. [7] WU X,LIU J,HUANG C,et al. 3-D path following of helical microswimmers with an adaptive orientation compensation model[J]. IEEE Transactions on Automation Science and Engineering,2020,17(2):823-832. [8] CHEN C,MOU F,XU L,et al. Light-steered isotropic semiconductor micromotors[J]. Advanced Materials,2017,29(3):1603374. [9] XU T,SOTO F,GAO W,et al. Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society,2014,136(24):8552-8555. [10] JING X,GUO W. Modeling and configuration design of electromagnetic actuation coil for a magnetically controlled microrobot[J]. Chinese Journal of Mechanical Engineering,2019,32(1):1-13. [11] GIULITTI S,MAGROFUOCO E,PREVEDELLO L,et al. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture[J]. Lab on a Chip,2013,13(22):4430-4441. [12] NIETO D,MCGLYNN P,DE LA FUENTE M,et al. Laser microfabrication of a microheater chip for cell culture outside a cell incubator[J]. Colloids and Surfaces B:Biointerfaces,2017,154:263-269. [13] 兰天. 空间细胞培养及实时动态显微成像系统关键技术研究[D]. 北京:北京理工大学,2015. LAN Tian. Research on key technologies of space cell culture and real-time dynamic microscopic imaging system[D]. Beijing:Beijing University of Technology,2015. [14] 江洋,刘冲,魏娟,等. 微流控芯片细胞动态培养装置的设计与制作[J]. 光学精密工程,2019,27(9):2020-2027. JIANG Yang,LIU Chong,WEI Juan,et al. Design and fabrication of a device for cell dynamic culture in microfluidic chip[J]. Optics and Precision Engineering,2019,27(9):2020-2027. [15] 谭逸斌,张宇翔,李中源,等. 一种可实现原位监测的细胞培养信息化装置[J]. 科学通报,2014,59(11):1026-1032. TAN Yibin,ZHANG Yuxiang,LI Zhongyuan,et al. A cell culture information device for monitoring in situ[J]. Chinese Science Bulletin,2014,59(11):1026-1032. [16] 周鹏,李田,张继业,等. 真空管道超级列车气动热效应[J]. 机械工程学报,2020,56(8):190-199. ZHOU Peng,LI Tian,ZHANG Jiye,et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering,2020,56(8):190-199. [17] 赵波. 初始制动时预测湿式制动器热对流特性的积分方法[J]. 机械工程学报,2020,56(24):198-207. ZHAO Bo. Integration method of thermal convection characteristics prediction for unsteady laminar flows during initial braking stage of wet brakes[J]. Journal of Mechanical Engineering,2020,56(24):198-207. [18] SZEMPLIŃSKA-STUPNICKA W,BAJKOWSKI J. The 1/2 subharmonic resonance and its transition to chaotic motion in a non-linear oscillator[J]. International Journal of Non-Linear Mechanics,1986,21(5):401-419. [19] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 1998. TAO Wenquan. Numerical heat transfer[M]. Xi'an:Xi'an Jiao Tong University Press,1998. |