• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (22): 305-324.doi: 10.3901/JME.2021.22.305

• 可再生能源与工程热物理 • 上一篇    下一篇

扫码分享

高电压微型超级电容器的制造方法及研究进展

汤勇1,2, 白石根1,2, 吴耀鹏1,2, 袁伟1,2, 万珍平1,2, 谢颖熙1,2   

  1. 1. 华南理工大学机械与汽车工程学院 广州 510640;
    2. 半导体显示与光通信器件国家地方联合工程研究中心 广州 510640
  • 收稿日期:2020-12-09 修回日期:2021-06-02 出版日期:2021-11-20 发布日期:2022-02-28
  • 通讯作者: 谢颖熙(通信作者),男,1989年出生,博士,副教授。主要研究方向为柔性储能器件微纳制造。E-mail:xieyingxi@scut.edu.cn
  • 作者简介:汤勇,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为表面功能结构加工、储能器件微纳制造等。E-mail:ytang@scut.edu.cn;白石根,男,1991年出生,博士,助理研究员。主要研究方向为激光微纳制造、柔性储能及智能传感器件。E-mail:964672037@qq.com
  • 基金资助:
    国家自然科学基金(51735004,51905178)、广东省重点领域研发计划(2019B090910001)和自然科学基金(2018A030310396)资助项目。

Manufacturing Methods and Research Progress of High Voltage Micro-supercapacitors

TANG Yong1,2, BAI Shigen1,2, WU Yaopeng1,2, YUAN Wei1,2, WAN Zhenping1,2, XIE Yingxi1,2   

  1. 1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640;
    2. National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, Guangzhou 510640
  • Received:2020-12-09 Revised:2021-06-02 Online:2021-11-20 Published:2022-02-28

摘要: 在微电子和微机械的高压应用中,如微型机器人、软致动器、皮肤电子、微型传感器和集成电子电路等,迫切需要高输出电压的储能/补给装置。近年来,高电压微型超级电容器(High voltage micro-supercapacitors,HVMSCs)因其微小型、便携式、柔韧性、高循环寿命及高功率/能量密度等优势而频繁作为功率补给装置应用到微机电系统,可满足一定范围的电压输出和能量供给,并且HVMSCs在电路中可作为储能器件应用可使电子产品更有可能趋向于集成式、高密度以及小型化。现有研究表明,增大MSCs的工作电压窗口,可以显著提升MSCs的输出能量密度,进而能最大限度地扩展其应用场合。因此,如何从材料、结构以及制造方法方面着手,制备全固态HVMSCs成为研究热点。基于此,首先对MSCs的电荷存储机制及电化学性能特征进行概述,其次分析高电压MSCs的实现原理,接着详细归纳HVMSCs的制造方法,主要包括高电压电极材料的制备(碳基材料、过渡金属氧化物、导电聚合物以及复合电极材料)以及高电压封装结构的制造(激光加工、喷墨打印、3D打印、丝网印刷、卷对卷印刷以及掩膜涂层),并且总结HVMSCs在储能功率器件、柔性传感以及可穿戴设施等方面的应用。在综合探讨HVMSCs的研究现状的基础上,最后对其在可穿戴和便携式电子设备等高电压领域的研究趋势和发展前景进行相应的展望。

关键词: 高电压微型超级电容器, 电极材料, 电容器结构, 制造方法, 储能器件

Abstract: At present, the research and design of temperature control for star sensor in domestic institutions are less, and they focus on the image processing and image algorithm optimization of star map. The thermal effect of temperature on the star sensor is analyzed in this manuscript by taking the target energy change, signal-to-noise ratio and centroid positioning error as indexes, so as to realize the reliable application of high-precision star sensor in complex space thermal environment. Furthermore, based on the structure and thermal distribution of star sensor, the thermal design and heat dissipation path optimization of star sensor are carried out, and the thermal control measures of TEC are proposed. The temperature distribution of star sensor is discussed in typical high temperature and low temperature conditions. The validity and rationality of the thermal design are simulated and analyzed by finite element simulation software. On the basis of the above analysis and design, a set of temperature control system is completed. By simulating the environmental conditions of the star sensor under high temperature conditions, the thermoelectric refrigeration method is used to cool the star sensor, so that the temperature of the star sensor detector maintains at 20℃±3℃. The relationship between thermal environment factors and image quality is clarified, and the correlation analysis between temperature and star recognition accuracy is completed, which provides a direction for future improvement of star sensor attitude determination accuracy.

Key words: high voltage micro-supercapacitors, electrode materials, capacitor structures, manufacturing methods, energy storage devices

中图分类号: