机械工程学报 ›› 2021, Vol. 57 ›› Issue (21): 160-181.doi: 10.3901/JME.2021.21.160
禹健, 郭艳婕, 杨雷
收稿日期:
2020-07-16
修回日期:
2021-04-18
出版日期:
2021-11-05
发布日期:
2021-12-28
通讯作者:
杨雷(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为碳基固体润滑技术、纳米表面工程和摩擦起电机理及应用。E-mail:yanglxjtu@xjtu.edu.cn
作者简介:
禹健,男,1995年出生,博士研究生。主要研究方向为摩擦起电机理及应用。E-mail:yj00837@stu.xjtu.edu.cn;郭艳婕,女,1988年出生,博士,高级工程师。主要研究方向为机械装备故障诊断理论、磨损图像识别技术和摩擦起电应用。E-mail:guoyanjie@xjtu.edu.cn
基金资助:
YU Jian, GUO Yanjie, YANG Lei
Received:
2020-07-16
Revised:
2021-04-18
Online:
2021-11-05
Published:
2021-12-28
摘要: 摩擦纳米发电机的发明为人们在能量收集领域开辟了新道路。固-液摩擦纳米发电机是基于固-液界面摩擦起电与静电感应效应耦合的发电装置,因其制造简单、成本低、能有效地收集多种形式的低频率水能,使其在摩擦纳米发电机中占有重要的地位。详述了固-液界面的起电机理,概括了固-液摩擦纳米发电机的典型结构和工作模式。分析了液体、固体摩擦材料的特性对摩擦纳米发电机输出性能的影响,介绍了常用的提高摩擦发电性能的微纳制造方法。综述了一系列固-液摩擦纳米发电机在自驱动型传感器和微机械自供电系统中的应用。总结了固-液摩擦纳米发电机目前存在的挑战,展望了其未来发展的趋势。
中图分类号:
禹健, 郭艳婕, 杨雷. 固-液摩擦纳米发电机[J]. 机械工程学报, 2021, 57(21): 160-181.
YU Jian, GUO Yanjie, YANG Lei. Solid-Liquid Triboelectric Nanogenerator[J]. Journal of Mechanical Engineering, 2021, 57(21): 160-181.
[1] 杨仙, 闵伶俐, 朱颖琳, 等. 纳米孔道动电效应能量转换系统的前沿研究进展[J]. 应用化学, 2018, 35(6):613-624. YANG Xian, MIN Lingli, ZHU Yinglin, et al. Recent research progress on nanopores and nanochannels based electrokinetical energy conversion systems[J]. Chinese Journal of Applied Chemistry, 2018, 35(6):613-624. [2] SCRUGGS J, JACOB P. Harvesting ocean wave energy[J]. Science, 2009, 323(5918):1176-1178. [3] KORNBLUH R D, PELRINE R, PRAHLAD H, et al. From boots to buoys:Promises and challenges of dielectric elastomer energy harvesting[J]. Proceedings of SPIE, 2011, 7976:797605. [4] HAN Qinkai, DING Zhuang, SUN Wenpeng, et al. Hybrid triboelectric-electromagnetic generator for self-powered wind speed and direction detection[J]. Sustainable Energy Technologies and Assessments, 2020, 39:100717. [5] WANG Yang, GAO Shouwei, XU Wanghuai, et al. Nanogenerators with superwetting surfaces for harvesting water/liquid energy[J]. Advanced Functional Materials, 2020, 30(26):1908252. [6] FAN Fengru, TIAN Zhongqun, WANG Zhonglin. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2):328-334. [7] WANG Zhonglin, SONG Jinhui. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246. [8] KIM T, CHUNG J, KIM D Y, et al. Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia[J]. Nano Energy, 2016, 27:340-351. [9] YAO Guang, KANG Lei, LI Jun, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device[J]. Nature Communications, 2018, 9(1):5349. [10] LI Anyin, ZI Yunlong, GUO Hengyu, et al. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry[J]. Nature Nanotechnology, 2017, 12(5):481-487. [11] YANG Shanshan, SU Yudan, XU Ying, et al. Mechanism of electric power generation from ionic droplet motion on polymer supported graphene[J]. Journal of the American Chemical Society, 2018, 140(42):13746-13752. [12] NIE Jinhui, WANG Ziming, REN Zewei, et al. Power generation from the interaction of a liquid droplet and a liquid membrane[J]. Nature Communications, 2019, 10(1):2264. [13] XUE Guobin, XU Ying, DING Tianpeng, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4):317-321. [14] TANG Wei, CHEN Baodong, WANG Zhonglin. Recent progress in power generation from water/liquid droplet interaction with solid surfaces[J]. Advanced Functional Materials, 2019, 29(41):1901069. [15] JIANG Dongyue, XU Minyi, DONG Ming, et al. Water-solid triboelectric nanogenerators:An alternative means for harvesting hydropower[J]. Renewable & Sustainable Energy Reviews, 2019, 115:109366. [16] XU Wanghuai, ZHENG Huanxi, LIU Yuan, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795):392-396. [17] NIE Jinhui, JIANG Tao, SHAO Jiajia, et al. Motion behavior of water droplets driven by triboelectric nanogenerator[J]. Applied Physics Letters, 2018, 112(18):183701. [18] PARK H Y, KIM H K, HWANG Y H, et al. Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow[J]. Journal of the Korean Physical Society, 2018, 72(4):499-503. [19] AHN J H, HWANG J Y, KIM C G, et al. Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity[J]. Nano Energy, 2020, 67:104269. [20] ZHAO Xuejiao, KUANG Shuangyang, WANG Zhonglin, et al. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy[J]. ACS Nano, 2018, 12(5):4280-4285. [21] ZHU Guang, SU Yuanjie, BAI Peng, et al. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface[J]. ACS Nano, 2014, 8(6):6031-6037. [22] ZHANG Xiangqian, YU Min, MA Ziran, et al. Self-powered distributed water level sensors based on liquid-solid triboelectric nanogenerators for ship draft detecting[J]. Advanced Functional Materials, 2019, 29(41):1900327. [23] ZHANG Weiqiang, WANG Pengfei, SUN Kun, et al. Intelligently detecting and identifying liquids leakage combining triboelectric nanogenerator based self-powered sensor with machine learning[J]. Nano Energy, 2019, 56, 277-285. [24] SHI Qiongfeng, WANG Hao, LEE C K. Using water as A self-generated triboelectric sensor for pressure and flow rate measurement[C]//2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems(NEMS), April 9-12, 2017, University of California, Los Angeles. California:IEEE-NEMS, 2017:635-638. [25] NIE Jinhui, REN Zewei, SHAO Jiajia, et al. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique[J]. ACS Nano, 2018, 12(2):1491-1499. [26] KUSHWAHA H S, KUMAR A, KUMAR R, et al. A water-driven triboelectric generator for electrocatalytic wastewater treatment[J]. Energy Technology, 2018, 6(4):670-676. [27] ZHAO Xuejiao, ZHU Guang, FAN Youjun, et al. Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection[J]. ACS Nano, 2015, 9(7):7671-7677. [28] HELSETH L E. Interdigitated electrodes based on liquid metal encapsulated in elastomer as capacitive sensors and triboelectric nanogenerators[J]. Nano Energy, 2018, 50:266-272. [29] LIANG Fei, ZHAO Xuejiao, LI Huayang, et al. Stretchable shape-adaptive liquid-solid interface nanogenerator enabled by in-situ charged nanocomposite membrane[J]. Nano Energy, 2020, 69:104414. [30] WU Yinghong, LUO Yang, QU Jingkui, et al. Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics[J]. Nano Energy, 2019, 64:103948. [31] ZHENG Li, LIN Zonghong, CHENG Gang, et al. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy[J]. Nano Energy, 2014, 9:291-300. [32] SU Yuanjie, WEN Xiaonan, ZHU Guang, et al. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter[J]. Nano Energy, 2014, 9:186-195. [33] WIJEWARDHANA K R, SHEN T Z, JAYAWEERA E N, et al. Hybrid nanogenerator and enhancement of water-solid contact electrification using triboelectric charge supplier[J]. Nano Energy, 2018, 52:402-407. [34] XIE Yannan, WANG Sihong, NIU Simiao, et al. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency[J]. Advanced Materials, 2014, 26(38):6599-6607. [35] XU Wanghuai, ZHOU Xiaofeng, HAO Chonglei, et al. SLIPS-TENG:Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface[J]. National Science Review, 2019, 6(3):540-550. [36] LIU Xianming, HUANG Zhendong, OH S W, et al. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries:a review[J]. Composites Science and Technology, 2012, 72(2):121-144. [37] WANG Xuan, ZHI Linjie, MÜLLEN K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1):323-327. [38] YI Fang, WANG Xiaofeng, NIU Simiao, et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring[J]. Science Advances, 2016, 2(6):1501624. [39] WANG Xiaofeng, YIN Yajiang, YI Fang, et al. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics[J]. Nano Energy, 2017, 39:429-436. [40] YANG Yanqin, SUN Na, WEN Zhen, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics[J]. ACS Nano, 2018, 12(2):2027-2034. [41] ZHANG Binbin, ZHANG Lei, DENG Weili, et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring[J]. ACS Nano, 2017, 11(7):7440-7446. [42] NIE Jinhui, REN Zewei, XU Liang, et al. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface[J]. Advanced Materials, 2020, 32(2):1905696. [43] ZOU Haiyang, ZHANG Ying, GUO Litong, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019, 10(1):1427. [44] WANG Zhonglin. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11):9533-9557. [45] ZHU Guang, LIN Zonghong, JING Qingshen, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator[J]. Nano Letters, 2013, 13(2):847-853. [46] CHEN Jie, GUO Hengyu, HE Xianming, et al. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film[J]. ACS Applied Materials & Interfaces, 2016, 8(1):736-744. [47] CHENG Gang, LIN Zonghong, DU Zuliang, et al. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator[J]. ACS Nano, 2014, 8(2):1932-1939. [48] 赖美慧. 基于PDMS复合摩擦层的微纳调控及其提高摩擦纳米发电机输出性能的研究[D]. 重庆:重庆大学, 2018. LAI Meihui. Study on micro-nano regulation based on PDMS composite friction layer and its improvement of output performance of triboelectric nanogenerator[D]. Chongqing:Chongqing University, 2018. [49] SINGH M, SHEETAL A, SINGH H, et al. Animal hair-based triboelectric nanogenerator (TENG):A substitute for the positive polymer layer in TENG[J]. Journal of Electronic Materials, 2020, 49(5):3409-3416. [50] MARIELLO M, SCARPA E, ALGIERI L, et al. Novel flexible triboelectric nanogenerator based on metallized porous PDMS and Parylene C[J]. Energies, 2020, 13(7):1625. [51] CHEN Huamin, XU Yun, BAI Lin, et al. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency[J]. Science China Information Sciences, 2018, 61(6):060416. [52] ZHANG S L, XU Minyi, ZHANG Chunli, et al. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect[J]. Nano Energy, 2018, 48:421-429. [53] CHOI D, KIM D W, YOO D, et al. Spontaneous occurrence of liquid-solid contact electrification in nature:toward a robust triboelectric nanogenerator inspired by the natural lotus leaf[J]. Nano Energy, 2017, 36:250-259. [54] WANG Zhonglin, WANG A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30:34-51. [55] 赵古田. 固液界面双电层结构的理论与实验研究[D]. 南京:东南大学, 2014. ZHAO Gutian. Theoretical and experimental study on electric double layer structure near solid-liquid interface[D]. Nanjing:Southeast University, 2014. [56] OLTHUIS W, SCHIPPERS B, EIJKEL J, et al. Energy from streaming current and potential[J]. Sensors and Actuators B:Chemical, 2005, 111:385-389. [57] DONATH E, VOIGT A. Streaming current and streaming potential on structured surfaces[J]. Journal of Colloid and Interface Science, 1986, 109(1):122-139. [58] WU Jun, WANG Xiaoli, LI Hanqing, et al. Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations[J]. Nano Energy, 2018, 48:607-616. [59] MARINOVA K G, ALARGOVA R G, DENKOV N D, et al. Charging of oil-water interfaces due to spontaneous adsorption of hydroxyl ions[J]. Langmuir, 1996, 12(8):2045-2051. [60] LIN Shiquan, XU Liang, WANG A C, et al. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11(1):399. [61] XU Cheng, ZI Yunlong, WANG A C, et al. On the electron-transfer mechanism in the contact-electrification effect[J]. Advanced Materials, 2018, 30(15):1706790. [62] WANG Zhonglin. On the first principle theory of nanogenerators from Maxwell's equations[J]. Nano Energy, 2020, 68:104272. [63] 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望[J]. 机械工程学报, 2019, 55(7):89-101. ZHANG Chi, FU Xianpeng, WANG Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems[J]. Journal of Mechanical Engineering, 2019, 55(7):89-101. [64] WANG Zhonglin. On Maxwell's displacement current for energy and sensors:the origin of nanogenerators[J]. Materials Today, 2017, 20(2):74-82. [65] WANG Zhonglin, JIANG Tao, XU Liang. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39:9-23. [66] YANG Lei, WANG Yunfei, GUO Yanjie, et al. Robust working mechanism of water droplet-driven triboelectric nanogenerator:triboelectric output versus dynamic motion of water droplet[J]. Advanced Materials Interfaces, 2019, 6(24):1901547. [67] LIN Zonghong, CHENG Gang, LEE S, et al. Harvesting water drop energy by a sequential contact-electrification and electrostatic-Induction process[J]. Advanced Materials, 2014, 26(27):4690-4696. [68] YANG Xiya, CHAN Zeyan, WANG Lingyun, et al. Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range[J]. Nano Energy, 2018, 44:388-398. [69] PARK H R, LEE J W, KIM D S, et al. Arrangement optimization of water-driven triboelectric nanogenerators considering capillary phenomenon between hydrophobic surfaces[J]. Scientific Reports, 2020, 10(1):818-823. [70] CHEN Yun, KUANG Yicheng, SHI Dachuang, et al. A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist[J]. Nano Energy, 2020, 73:104765. [71] DING Jing, TAO Wenquan, FAN S K. Study of vibrational droplet triboelectric nanogenerator on structural and operational parameters[J]. Nano Energy, 2020, 70:104473. [72] LIU Wenbo, XU Liang, BU Tianzhao, et al. Torus structured triboelectric nanogenerator array for water wave energy harvesting[J]. Nano Energy, 2019, 58:499-507. [73] AJI A S, NISHI R, AGO H, et al. High output voltage generation of over 5 V from liquid motion on single-layer MoS2[J]. Nano Energy, 2020, 68:104370. [74] LU Yuanchao, WU Hui, YANG Qunqing, et al. A filter paper-based nanogenerator via water-drop flow[J]. Advanced Sustainable Systems, 2019, 3(8):1900012. [75] BU Tianzhao, YANG Hang, LIU Wenbo, et al. Triboelectric effect-driven liquid metal actuators[J]. Soft Robotics, 2019, 6(5):664-670. [76] JIANG Peng, ZHANG Lei, GUO Hengyu, et al. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing[J]. Advanced Materials, 2019, 31(39):1902793. [77] MASLIYAH J H, BHATTACHARJEE S. Electrokinetic and colloid transport phenomena[M]. New Jersey:John Wiley & Sons Inc, 2006. [78] RINALDI L, MARELLI M. The use of number words in natural language obeys Weber's law[J]. Journal of Experimental Psychology:General, 2020, 149(7):1215-1230. [79] MISYURA S Y. The effect of Weber number, droplet sizes and wall roughness on crisis of droplet boiling[J]. Experimental Thermal and Fluid Science, 2017, 84:190-198. [80] 姚一娜, 李聪, 陶振翔, 等. 液滴碰撞倾斜壁面的动力学特性[J]. 清华大学学报, 2019, 59(2):129-134. YAO Yina, LI Cong, TAO Zhenxiang, et al. Experimental study of the dynamic characteristics of an oblique impact of a water droplet[J]. Journal of Tsinghua University, 2019, 59(2):129-134. [81] 薛健. 压力对固体表面润湿性的影响研究[D]. 南京:南京大学, 2014. XUE Jian. Study on the effect of pressure on the wettability of solid surface[D]. Nanjing:Nanjing University, 2014. [82] MARMUR A, KOJEVNIKOVA S. Super-hydrophobic surfaces:methodological considerations for physical design[J]. Journal of Colloid and Interface Science, 2020, 568:148-154. [83] WU Xintian. Wetting transition in the McCoy-Wu model[J]. Annals of Physics, 2020, 418:168166. [84] 柯清平, 李广录, 郝天歌, 等. 超疏水模型及其机理[J]. 化学进展, 2010, 22(Z1):284-290. KE Qingping, LI Guanglu, HAO Tiange, et al. Superhydrophobicity theoretical models and mechanism[J]. Progress in Chemistry, 2010, 22(Z1):284-290. [85] MIWA M, NAKAJIMA A, FUJISHIMA A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000, 16(13):5754-5760. [86] NAKAJIMA A, HASHIMOTO K, WATANABE T, et al. Transparent superhydrophobic thin films with self-cleaning properties[J]. Langmuir, 2000, 16(17):7044-7047. [87] LACKS D J, SANKARAN R M. Contact electrification of insulating materials[J]. Journal of Physics D:Applied Physics, 2011, 44(45):453001. [88] BRYK P, KORCZENIEWSKI E, SZYMAŃSKI G S, et al. What is the value of water contact angle on silicon?[J]. Materials, 2020, 13(7):1554. [89] CHUNG C K, KE K H. High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices[J]. Applied Surface Science, 2020, 508:145310. [90] CHUNG J, HEO D, KIM B, et al. Superhydrophobic water-solid contact triboelectric generator by simple spray-on fabrication method[J]. Micromachines, 2018, 9(11):593. [91] CUI Siwen, ZHENG Youbin, LIANG Jun, et al. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection[J]. Chemical Science, 2016, 7(10):6477-6483. [92] NIU Simiao, WANG Zhonglin. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy, 2015, 14:161-192. [93] JANI A M M, LOSIC D, VOELCKER N H. Nanoporous anodic aluminium oxide:Advances in surface engineering and emerging applications[J]. Progress in Materials Science, 2013, 58(5):636-704. [94] 刘欢, 周震, 刘惠兰, 等. ICP刻蚀硅形貌控制研究[J]. 传感技术学报, 2011, 24(2):200-203. LIU Huan, ZHOU Zhen, LIU Huilan, et al. The study on the morphology control of silicon etching by ICP[J]. Chinese Journal of Sensors and Actuators, 2011, 24(2):200-203. [95] LI Jingjie, CHENG Xinhong, WANG Qian, et al. Morphology improvement of SiC trench by inductively coupled plasma etching using Ni/Al2O3 bilayer mask[J]. Materials Science in Semiconductor Processing, 2017, 67:104-109. [96] BHARDWAJ N, KUNDU S C. Electrospinning:A fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3):325-347. [97] ZHAO Pengfei, SOIN N, PRASHANTHI K, et al. Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators[J]. ACS Applied Materials & Interfaces, 2018, 10(6):5880-5891. [98] FENG Yan, XIONG Tianrou, JIANG Shaohua, et al. Mechanical properties and chemical resistance of electrospun polyterafluoroethylene fibres[J]. RSC Advances, 2016, 6(29):24250-24256. [99] HU Jue, PRABHAKARAN M P, TIAN Lingling, et al. Drug-loaded emulsion nanofibers:Characterization, drug release and in vitro biocompatibility[J]. RSC Advances, 2015, 5(121):100256-100267. [100] YAZGAN G, POPA A M, ROSSI R M, et al. Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning[J]. Polymer, 2015, 66:268-276. [101] AGARWAL S, GREINER A. On the way to clean and safe electrospinning-green electrospinning:Emulsion and suspension electrospinning[J]. Polymers for Advanced Technologies, 2011, 22(3):372-378. [102] LEE D H, PARK K H, HONG L Y, et al. SiCN ceramic patterns fabricated by soft lithography techniques[J]. Sensors and Actuators A:Physical, 2007, 135(2):895-901. [103] 车友新. 基于微转移软印刷技术构筑微纳图案的研究[D]. 无锡:江南大学, 2017. CHE Youxin. Construction of micro-nanopatterns based on microtransfer molding of soft lithography[D]. Wuxi:Jiangnan University, 2017. [104] 赵小立, 董申, 于海涛. 软印刷技术[J]. 微纳电子技术, 2006(1):55-63. ZHAO. Xiaoli, DONG Shen, YU Haitao. Soft lithography[J]. Micronanoelectronic Technology, 2006(1):55-63. [105] WANG Zhe, CHENG Li, ZHENG Youbin, et al. Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion[J]. Nano Energy, 2014, 10:37-43. [106] WANG Sihong, XIE Yannan, NIU Simiao, et al. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection:Methodology and theoretical understanding[J]. Advanced Materials, 2014, 26(39):6720-6728. [107] LIU Wenlin, WANG Zhao, WANG Gao, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019, 10(1):1426. [108] 王中林, 林龙, 陈俊, 等. 摩擦纳米发电机[M]. 北京:科学出版社, 2017. WANG Zhonglin, LIN Long, CHEN Jun, et al. Triboelectric nanogenerators[M]. Beijing:Science Press, 2017. [109] INDIRA S S, VAITHILINGAM C A, ORUGANTI K S P, et al. Nanogenerators as a sustainable power source:state of art, applications, and challenges[J]. Nanomaterials, 2019, 9(5):773. [110] WANG Zhonglin. Entropy theory of distributed energy for internet of things[J]. Nano Energy, 2019, 58:669-672. [111] AHMED A, HASSAN I, ELKADY M F, et al. Integrated triboelectric nanogenerators in the era of the internet of things[J]. Advanced Science, 2019, 6(24):1802230. [112] 倪晋仁, 王光谦, 张红武. 固液两相流基本理论及其最新应用[M]. 北京:科学出版社, 1991. NI Jinren, WANG Guangqian, ZHANG Hongwu. Basic theories and recent progress for two-phase flows[M]. Beijing:Science Press, 1991. |
[1] | 曹杰, 王政, 花镜, 张忠强, 程广贵, 丁建宁. 基于静电感应的非接触式手势解锁技术研究[J]. 机械工程学报, 2024, 60(11): 309-317. |
[2] | 陈恕彬, 王慧妍, 李应龙, 王瑞雪, 孔祥号, 夏章川. 摩擦纳米发电机与等离子体技术的交叉融合[J]. 机械工程学报, 2022, 58(21): 171-185. |
[3] | 魏斌, 庞洪臣, 杨芳, 赵志强, 钟英豪, 黄喜利, 林芳, 潘新祥. 基于摩擦纳米发电机的自供能低频振动传感器研究[J]. 机械工程学报, 2022, 58(20): 158-165. |
[4] | 张浩东, 王武宏, 陆逍, 谭海秋, 蒋晓蓓, 石健. 基于摩擦纳米发电机的车辆踏板运动量化模型[J]. 机械工程学报, 2022, 58(17): 215-225. |
[5] | 肖渊, 刘进超, 吕晓来, 李红英, 代阳. CNT/PDMS介电层微结构成型及摩擦纳米发电机制备[J]. 机械工程学报, 2021, 57(15): 177-185. |
[6] | 杨潍旭, 王晓力, 陈平. 摩擦纳米发电机表面织构的优化设计[J]. 机械工程学报, 2020, 56(3): 130-136. |
[7] | 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望[J]. 机械工程学报, 2019, 55(7): 89-101. |
[8] | 沈九兵, 张凯, 邢子文, 房文娜, 曹建文. 采用双螺杆压缩机的机械蒸汽再压缩污水处理系统试验研究[J]. 机械工程学报, 2016, 52(10): 185-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||