[1] CUETO E,CHINESTA F. Meshless methods for the simulation of material forming:A review[J]. International Journal of Material Forming,2015,8:25-43. [2] PATEL V G,RACHCHH N V. Meshless method-Review on recent developments[J]. Materials Today:Proceedings,2020,26:1598-1603. [3] CHEN J S,PAN C,ROQUE C M O L,et al. A lagrangian reproducing kernel particle method for metal forming analysis[J]. Computational Mechanics,1998,22:289-307. [4] HARDEE E,CHANG K H,GRINDEANU I,et al. A structural nonlinear analysis workspace (SNAW) based on meshless methods[J]. Advances in Engineering Software,1999,30:153-175. [5] 刘永辉,陈军. 任意模具形状的金属三维体积成形过程刚塑性无网格RKPM分析方法[J]. 塑性工程学报,2008,15(3):105-109. LIU Yonghui,CHEN Jun. Rigid-plastic reproducing kernel particle method for three-dimensional bulk metal forming with arbitrarily-shaped dies[J]. Journal of Plasticity Engineering,2008,15(3):105-109. [6] LIU H S,FU M W. Adaptive reproducing kernel particle method using gradient indicator for elasto-plastic deformation[J]. Engineering Analysis with Boundary Elements,2013,37:280-292. [7] 段庆林,庞志佳,马今伟,等. 弹塑性大变形分析的一致性高阶无单元伽辽金法[J]. 计算力学学报,2019,36(4):471-476. DUAN Qinglin,PANG Zhujia,MA Jinwei,et al. Consistent high order element-free Galerkin method for elastoplastic large deformation analysis[J]. Chinese Journal of Computational Mechanics,2019,36(4):471-476. [8] LU P,ZHAO G,GUAN Y,et al. Research on rigid/visco-plastic element-free Galerkin method and key simulation techniques for three-dimensional bulk metal forming processes[J]. International Journal of Advanced Manufacturing Technology,2011,53:485-503. [9] HOSTOS J C,BENCOMO A D,CABRERA E S,et al. Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions,employing a meshless technique[J]. International Journal of Plasticity,2013,103:119-142. [10] 郑刚,伍素珍,李光耀,等. 金属体积成形过程的无网格RPIM方法分析[J]. 湖南大学学报,2010,37(10):41-46. ZHENG Gang,WU Suzhen,LI Guangyao,et al. Numerical simulation of bulk forming processes by radial point interp01ation method(RPIM)[J]. Journal of Hunan University,2010,37(10):41-46. [11] HANOGLU U,ŠARLER B. Multi-pass hot-rolling simulation using a meshless method[J]. Computers and Structures,2018,194:1-14. [12] GRECO F,FILICE L,PECO C,et al. A stabilized formulation with maximum entropy meshfree approximants for viscoplastic flow simulation in metal forming[J]. International Journal of Material Forming,2015,8(3):341-353. [13] KUMAR S,TUTCUOGLUA AD,HOLLENWEGER Y,et al. A meshless multiscale approach to modeling severe plastic deformation of metals:Application to ECAE of pure copper[J]. Computational Materials Science,2020,173:109329. [14] 谢桂兰,于超,龚曙光,等. 基于物质点法金属体积成形过程的仿真[J]. 中国机械工程,2016,27(22):3093-3102. XIE Guilan,YU Chao,GONG Shuguang,et al. Simulation of metal bulk forming based on MPM[J]. Chinese Mechanical Engineering,2016,27(22):3093-3102. [15] MONAGHAN J J. Smoothed particle hydrodynamics and its diverse applications[J]. Annual Review of Fluid Mechanics,2012,44:323-346. [16] WANG Z B,CHEN R,WANG H,et al. An overview of smoothed particle hydrodynamics for simulating multiphase flow[J]. Applied Mathematical Modelling,2016,40:9625-9655. [17] QUAK W,van den BOOGAARD A H,Huétink J. Meshless methods and forming processes[J]. International Journal of Material Forming,2009,2(1):585-588. [18] GRAY J P,MONAGHAN J J,Swift R P. SPH elastic dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:6641-6662. [19] PEREIRA G G,CLEARY P W,LEMIALE V. SPH method applied to compression of solid materials for a variety of loading conditions[J]. Applied Mathematical Modelling,2017,44:72-90. [20] LI J,GUAN Y,WANG G,et al. Meshless modeling of bending behavior of bi-directional functionally graded beam structures[J]. Composites Part B,2018,155:104-111. [21] 明付仁,张阿漫,姚熊亮. 弹性壳结构静力与动力分析的光滑粒子法[J]. 物理学报,2013,62(11):110203. MING Furen,ZHANG Aman,YAO Xiongliang. Static and dynamic analysis of elastic shell structures with smoothed particle method[J]. Acta Physica Sinica,2013,62(11):110203. [22] GANZENMULLER G C,SAUER M,MAY M,et al. Hourglass control for smooth particle hydrodynamics removes tensile and rank-deficiency instabilities[J]. The European Physical Journal Special Topics:2016,225(2):385-395. [23] RANDLES P W,LIBERSKY L D. Normalized SPH with stress points[J]. International Journal for Numerical Methods in Engineering,2000,48:1445-1462. [24] CHEN J K,BERAUN J E,CARNEY T C. A corrective smoothed particle method for boundary value problems in heat conduction[J]. International Journal for Numerical Methods in Engineering,1999,46:231-252. [25] BATRA R C,ZHANG G M. Modified smoothed particle hydrodynamics (MSPH) basis functions for meshless methods,and their application to axisymmetric Taylor impact test[J]. Journal of Computational Physics,2008,227(3):1962-1981. [26] BATRA R C,ZHANG G M. SSPH basis functions for meshless methods,and comparison of solutions with strong and weak formulations[J]. Computational Mechanics,2008,41:527-545. [27] GARY A D. Moving-least-squares-particle hydrodynamics-I. Consistency and stability[J]. International Journal for Numerical Methods,1999,44(8):1115-1155. [28] FU F,LI J,LIN J,et al. Moving least squares particle hydrodynamics method for Burgers' equation[J]. Applied Mathematics and Computation,2019,356:362-378. [29] BONET J,KULASEGARAM S. Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods[J]. International Journal for Numerical Methods in Engineering,2001,52(11):1203-1220. [30] MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational Physics,1989,82(1):1-15. [31] LIN J,NACEUR H,COUTELLIER D,et al. Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method[J]. Engineering Computations,2015,32(3):779-805. [32] GANZENMULLER G C. An hourglass control algorithm for Lagrangian smooth particle hydrodynamics[J]. Computer Methods in Applied Mechanics and Engineering,2015,286:87-106. [33] LIU G R,LIU M B. Smoothed particle hydrodynamics:a meshfree particle method[M]. London:World Scientific,2003. [34] COURANT R,FRIEDRICHS K,LEWY H. On the partial difference equations of mathematical physics[J]. IBM Journal of Research and Development,1967,11(2):215-234. [35] LIU M B,LIU G R,LAM K Y. Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength[J]. Shock Waves,2006,15(1):21-29. [36] LIBERSKY L D,PETSCHEK A G. Smooth particle hydrodynamics with strength of materials[M]//. Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method. Berlin:Springer,1991. [37] JOHNSON G R,STRYK R A,BEISSEL S R. SPH for high velocity impact computations[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1):347-373. |