[1] VELEX P,FLAMAND L. Response of planetary trains to mesh parametric excitations restore desktop view[J]. ASME Journal of Mechanical Design,1996,118(1):7-14.
[2] CHAO G Y,PARKER R G. Sensitivity of general compound planetary gear natural frequencies and vibration modes to model parameters[J]. ASME Journal of Vibration Acoustics,2010,132(0110006):1-13.
[3] PARKER R G,LIN J. Mesh phasing relationships in planetary and epicyclic gears[J]. ASME Journal of Mechanical Design,2004,126(2):365-370.
[4] 魏静,吕程,孙伟,等. NGW型行星轮系模态特性及参数敏感性分析[J]. 振动工程学报,2013,26(5):654-664.
WEI Jing,LÜ Cheng,SUN Wei,et al. Study on the mode characteristics and parameter sensitivity for NGW planetary gear system[J]. Journal of Vibration Engineering,2013,26(5):654- 664.
[5] SUN W,DING X,WEI J,et al. A method for analyzing sensitivity of multi-stage planetary gear coupled modes to modal parameters[J]. Journal of Vibro-engineering,2015,17(6):3133-3146.
[6] AMBARISHA V K,PARKER R G. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration,2007,302(3):577-595.
[7] ABOUSLEIMAN V,VELEX P. A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets[J]. Mechanism and Machine Theory,2006,41(6):725-748.
[8] INALPOLAT M,KAHRAMAN A. Dynamic modeling of planetary gears of automatic transmission[J]. Proc. IMechE,Part K:J. Multi-body Dynamics,2008,222:229-242.
[9] AL-SHYYAB A,ALWIDYAN K,JAWARNEH A,et al. Non-linear dynamic behaviour of compound planetary gear trains:Model formulation and semi-analytical solution[J]. Proc. IMechE,Part K:J. Multi-body Dynamics,2009,223:1-11.
[10] 孙智民,沈允文,李素有. 封闭行星齿轮传动系统的动态特性研究[J]. 机械工程学报,2002,38(2):44-52.
SUN Zhimin,SHEN Yunwen,LI Suyou. Study on dynamic behavior of encased differential gear train[J]. Chinese Journal of Mechanical Engineering,2002,38(2):44-52.
[11] 秦大同,肖正明,王建宏. 基于啮合相位分析的盾构机减速器多级行星齿轮传动动力学特性[J]. 机械工程学报,2011,47(23):20-29.
QIN Datong,XIAO Zhengming,WANG Jianhong. Dynamic characteristics of multi-stage planetary gears of shield tunnelling machine based on planet mesh phasing analysis[J]. Journal of Mechanical Engineering,2011,47(23):20-29.
[12] 王世宇. 基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D]. 天津:天津大学,2005.
WANG Shiyu. Theoretical and experimental investigations on dynamics of spur planetary gear transmissions based on planet phasing theory[D]. Tianjin:Tianjin University,2005.
[13] 宋轶民,许伟东,张策,等. 2K-H 行星传动的修正扭转模型建立与固有特性分析[J]. 机械工程学报,2006,42(5):16-21.
SONG Yimin,XU Weidong,ZHANG Ce,et al. Modified torsional model development and natural characterics analysis of 2K-H epicyclic gearing[J]. Chinese Journal of Mechanical Engineering,2006,42(5):16-21.
[14] 孙涛,胡海岩. 基于离散傅立叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J]. 机械工程学报,2002,38(11):58-61.
SUN Tao,HU Haiyan. Nonlinear dynamics of planetary gear transmission by harmonic balance method based DFT[J]. Chinese Journal of Mechanical Engineering,2002,38(11):58-61.
[15] IGLESIAS,FERNÁNDEZ,DE-JUAN,et al. Planetary gear profile modification design based on load sharing modeling[J]. Chinese Journal of Mechanical Engineering,2015,28(4):810-820.
[16] CHENG Z,HU N. Quantitative damage detection for planetary gear sets based on physical models[J]. Chinese Journal of Mechanical Engineering,2012,25(1):190-196.
[17] CHANG L H,LIU G,WU L Y. A robust model for determining the mesh stiffness of cylindrical gears[J]. Mechanism and Machine Theory,2015,87:93-114.
[18] 常乐浩,刘更,吴立言. 齿轮综合啮合误差计算方法及对系统振动的影响[J]. 机械工程学报,2015,51(1):123-130.
CHANG Lehao,LIU Geng,WU Liyan. Determination of composite meshing errors and its influence on the vibration of gear system[J]. Journal of Mechanical Engineering,2015,51(1):123-130.
[19] 王艾伦,刘云. 复杂机电系统动力学相似分析的键合图法[J]. 机械工程学报,2010,46(1):74-78.
WANG Ailun,LIU Yun. Bond graph method for the dynamic similarity analysis of complex electromechanical system[J]. Journal of Mechanical Engineering,2010,46(1):74-78.
[20] 曹宏瑞,李亚敏,何正嘉,等. 高速滚动轴承-转子系统时变轴承刚度及振动响应分析[J]. 机械工程学报,2014,50(15):73-81.
CAO Hongrui,LI Yamin,HE Zhengjia,et al. Time varying bearing stiffness and vibration response analysis of high speed rolling bearing-rotor systems[J]. Journal of Mechanical Engineering,2014,50(15):73-81.
[21] ZHONG W X,CAI Z Q. Precise integration method for LQG optimal measurement feedback control problem[J]. Applied Mathematics and Mechanics-English Edition,2000,21(12):1417-1422.
[22] ABOUSLEIMAN V,VELEX P,BECQUERELLE S. Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers[J]. Journal of Mechanical Design,2007,129(1):711-722. |