• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (1): 175-183.doi: 10.3901/JME.2016.01.175

• 制造科学与技术 • 上一篇    下一篇

扫码分享

面向复杂产品开发供应商选择的改进BN模型

钟金宏,  白阳   

  1. 1. 合肥工业大学管理学院  合肥  230009;
    2. 合肥工业大学过程优化与智能决策教育部重点实验室  合肥  230009
  • 收稿日期:2015-01-28 修回日期:2015-09-24 出版日期:2016-01-05 发布日期:2016-01-05
  • 作者简介:钟金宏,男,1971年出生,博士,副教授。主要研究方向为物流与供应链管理、系统评估与决策、信息管理与信息系统。 E-mail:jinhong.zhong@hfut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71171072, 71202047, 71301040)。

Improved Bayesian Network Model for Supplier Selection of Complicated Product Development

ZHONG Jinhong,  BAI Yang   

  1. 1. School of Management, Hefei University of Technology, Hefei 230009;
    2. Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009
  • Received:2015-01-28 Revised:2015-09-24 Online:2016-01-05 Published:2016-01-05

摘要: 复杂产品开发是企业及其众多供应商共同参与的协同开发过程,供应商评价、选择和协同直接关系到复杂产品开发的成败和优劣。建立了包含环境因素的复杂产品开发供应商选择指标体系,以之为基础构建了由准则层、因素层、成本项层和总成本组成的贝叶斯网络模型,并对准则节点和因素节点采用三级节点状态。采用群体层次分析法和线性加权法确定模型参数,以降低在参数设定时专家的工作量和工作难度,以及对专家知识和经验的要求。由模型推理过程计算候选供应商总成本,推理中对定量指标,引入了信念度概念将其转化为评价分布。以某汽车公司的轿车整车开发为背景,构造车载空调开发供应商选择算例,验证了所提方法的有效性,并用企业偏好设定模型参数进行了模型的敏感性分析。

关键词: 贝叶斯网络, 复杂产品开发, 供应商选择

Abstract: Complicated product development (CPD) is a collaborative development process participated in by enterprise and its many suppliers together. Supplier evaluation and selection, and the coordination among suppliers and enterprise are directly related to the success or failure of CPD and the performance of complicated product. A supplier selection indicator system of CPD is established, and then construct a Bayesian network model which is comprised of criteria layer, factors layer, cost items layer and the total cost. Moreover, the nodes belonged to the criteria layer and factors layer be of three states in the model. The group analytic hierarchy process and linear weighting method are adopted to acquire the model parameters in order to decrease the workload and the difficulty of expert and the requirements for expert knowledge and experience during the parameters setting. Total cost for each alternative is computed by the model inference process in which quantitative indicators are transformed into evaluation distribution by introducing the conception of belief degree. The effectiveness of the proposed method is verified by a computational example of supplier selection for a car air conditioning which is on the base of the whole car development of a motor company. Furthermore, we make sensitivity analysis of the proposed Bayesian network model by means of the model parameters reflecting enterprise preference.

Key words: Bayesian network, complicated product development, supplier selection

中图分类号: