[1] 《航空制造工程手册》总编委会. 航空制造工程手册:飞机装配[M]. 2版. 北京:航空工业出版社, 2010. General editorial board of Aiation Manufacturing engineering Manual. Aviation manufacturing engineering manual:Aircraft assembly[M]. 2nd ed. Beijing:Aviation Industry Press, 2010. [2] MARGUET B, RIBERE B. Measurement-assisted applications on airbus final assembly lines[R]. SAE, 2003-01-2950, 2003. [3] 翟雨农,李东升,王亮,等. 机身部件数字化柔性装配技术[J]. 航空制造技术, 2013(1):74-79. DI Yunong, LI Dongsheng, WANG Liang, et al. Digital and flexible assembly technology for fuselage[J]. Aeronautical Manufacturing Technology, 2013(1):74-79 [4] 徐碧菡, 孙涪龙, 赵罡, 等. 大部件对接中基于单位四元数的iGPS测量位姿比对研究[J]. 图学学报, 2014, 35(5):729-735. XU Bihan, SUN Fulong, ZHAO Gang, et al. A unit-quaternion-based attitude matching algorithm applied for iGPS measurement[J]. Journal of graphics. 2014, 35(5):729-735. [5] 戴肇鹏, 黄翔, 李泷杲, 等. 飞机大部件自动对接同步调姿方法[J]. 航空制造技术, 2016, 499(4):52-56. DAI Zhaopeng, HUANG Xiang, LI Shuanggao, et al. A synchronous position and pose adjustment method for automatic assembly of large aircraft components[J]. Aeronautical Manufacturing Technology, 2016, 499(4):52-56. [6] 王颖辉, 韩先国. 基于加权最小二乘法的大部件对接位姿评估算法研究[J]. 航空精密制造技术, 2011, 47(5):48-51. WANG Yinghui, HAN Xianguo. Research on posture evaluation algorithm based on weighted least square for large part merging[J]. Aviation Precision Manufacturing Technology, 2011, 47(5):48-51. [7] 王青, 郑飞, 任英武, 等. 基于孔特征约束的飞机部件位姿优化方法[J]. 计算机集成制造系统, 2017, 23(2):243-252. WANG Qing, ZHENG Fei, REN Yingwu, et al. Posture evaluation method for aircraft component based on hole feature[J]. Computer Integrated Manufacturing Systems, 2017, 23(2):243-252. [8] 刘继红, 庞英仲, 邹成. 基于关键特征的飞机大部件对接位姿调整技术[J]. 计算机集成制造系统, 2013, 19(5):1009-1014. LIU Jihong, PANG Yingzhong, ZOU Cheng. Adjusting position-orientation of large components based on key features[J]. Computer Integrated Manufacturing Systems, 2013, 19(5):1009-1014. [9] BESL P J, MCKAY N. A method for registration of 3-D shapes[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions, 1992, 14(2):239-256. [10] ZHANG Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2):119-152. [11] SAHOO K C, MENQ C. Localization of 3-D objects having complex sculptured surfaces using tactile sensing and surface description[J]. Journal of Manufacturing Science and Engineering-Transaction of the ASME, 1991, 113(1):85-92. [12] YAU H, MENQ C. A unified least-squares approach to the evaluation of geometric errors using discrete measurement data[J]. International Journal of Machine Tools and Manufacture, 1996, 36(11):1269-1290. [13] TUCKER T M, KURFESS T R. Newton methods for parametric surface registration. Part I. Theory[J]. Computer-Aided Design, 2003, 35(1):107-114. [14] POTTMANN H, LEOPOLDSEDER S, HOFER M. Registration without ICP[J]. Computer Vision and Image Understanding, 2004, 95(1):54-71. [15] ZHU L, XIONG Z, DING H, et al. A distance function based approach for localization and profile error evaluation of complex surface[J]. Journal of Manufacturing Science and Engineering-Transaction of the ASME, 2004, 126(3):542-554. [16] JOHNSON A E, HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions, 1999, 21(5):433-449. [17] ZHANG D, HEBERT M. Harmonic maps and their applications in surface matching[C]//Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference On. IEEE, 1999, 2:524-530. [18] ZHANG D. Harmonic shape images:A 3D free-form surface representation and its applications in surface matching[D]. Pittsburgh:Carnegie Mellon University, 1999. [19] IKEUCHI K. Recognition of 3-D objects using the extended Gaussian image[C]//IJCAI. 1981:595-600. [20] HORN B K P. Extended Gaussian images[J]. Proceedings of the IEEE, 1984, 72(12):1671-1686. [21] WANG S, WANG Y, JIN M, et al. Conformal geometry and its applications on 3D shape matching, recognition, and stitching[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions, 2007, 29(7):1209-1220. [22] ZENG W, SAMARAS D, GU X D. Ricci flow for 3D shape analysis[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2010, 32(4):662-677. [23] LI X, GU X, QIN H. Surface mapping using consistent pants decomposition[J]. Visualization and Computer Graphics, IEEE Transactions, 2009, 15(4):558-571. [24] LI X, BAO Y, GUO X, et al. Globally optimal surface mapping for surfaces with arbitrary topology[J]. Visualization and Computer Graphics, IEEE Transactions, 2008, 14(4):805-819. [25] WU Huaiyu, PAN Chunhong, YANG Qing, et al. Consistent correspondence between arbitrary manifold surfaces[C]//Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 2007:1-8. [26] HUANG Shunzhou, WANG Hao, ZHAO Yong, et al. An analytical representation of conformal mapping for genus-zero implicit surfaces and its application to surface shape similarity assessment[J]. Computer-Aided Design, 2015, 64:9-21. [27] PLANITZ B M, MAEDER A J, WILLIAMS J A. The correspondence framework for 3D surface matching algorithms[J]. Computer Vision and Image Understanding, 2005, 97(3):347-383. [28] FABRY T, SMEETS D, VANDERMEULEN D. Surface representations for 3D face recognition[M]. Vienna, Austria:INTECH, 2010. [29] HORN B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A(Optics and Image Science), 1987, 4(4):629-642. [30] 初冠南. 现代船舶建造技术[M]. 北京:北京大学出版社, 2014. CHU Guangnan. Modern ship building technology[M]. Beijing:Press of Peking University, 2014. |