• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2016, Vol. 52 ›› Issue (7): 6-13.doi: 10.3901/JME.2016.07.006

• 机构学及机器人 • 上一篇    下一篇

扫码分享

基于单通道sEMG分解的手部动作识别方法

熊安斌1, 丁其川1, 赵新刚1, 韩建达1, 刘光军1, 2   

  1. 1. 中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016;
    2. 瑞尔森大学航空航天工程系 多伦多 M5B 2K3 加拿大
  • 出版日期:2016-04-05 发布日期:2016-04-05
  • 作者简介:熊安斌,男,1988年出生,博士。主要研究方向为模式识别与大数据处理。E-mail:xiongab@sia.cn;丁其川(通信作者),男,1984年出生,博士,副研究员。主要研究方向生物电信号处理、模式识别与智能系统。E-mail:dingqichuan@sia.cn;赵新刚,男,1978年出生,博士,研究员。主要研究方向先进控制理论、智能系统、康复机器人。E-mail:zhaoxingang@sia.cn;韩建达,男,1968年出生,博士,研究员。主要研究方向可穿戴机器人、智能系统、移动机器人自主控制。E-mail:jdhan@sia.cn
  • 基金资助:
    国家高技术研究发展计划(863计划,2015AA042302)、国家自然科学基金(61273355,61503374,61573340)和机器人学国家重点实验室自主课题(2015-z06)资助项目

Classification of Hand Gestures Based on Single-channel sEMG Decomposition

XIONG Anbin1, DING Qichuan1, ZHAO Xingang1, HAN Jianda1, LIU Guangjun1, 2   

  1. 1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016;
    2. Department of Aerospace Engineering, Ryerson University, Toronto M5B 2K3, Canada
  • Online:2016-04-05 Published:2016-04-05

摘要: 表面肌电信号(Surface electromyography,sEMG)已广泛应用于手部动作识别。为提高动作识别精度,研究者往往需要采集多个通道sEMG信号,从而增加应用复杂性,针对这一情况,提出一种基于单通道sEMG分解的手部动作识别方法。使用单通道电极采集人体上臂肌肉sEMG,将其分解为6个运动单元动作电位序列,过程包括:二阶差分滤波、阈值计算、尖峰检测、分层聚类;然后,提取绝对值积分、最大值、非零中值、半窗能量等特征,并采用主元分析法降维;最后,利用支持向量机分类识别5种不同手部动作,精度达到80.4%。而采用未融合sEMG分解的传统方法,动作识别精度仅有约70%。

关键词: 表面肌电信号, 分层聚类, 运动单元动作电位序列, 主元分析支持向量机

Abstract: Surface electromyography (sEMG) has been applied extensively in gestures recognition. In order to improve the recognition accuracy, multi-channel sEMG is conventionally sampled, which also increases the complexity of applications. To solve the problem, a novel gesture recognition method based on sEMG decomposition is proposed. Sampling sEMG signals from the muscle of human upper limb by a single-channel electrode; then decomposing the sEMG into six motor unit action potential trains (MUAPTs) and the decomposition process includes 2-order differential filtering, threshold calculation, spike detection and hierarchical clustering. Afterwards, the features, including integral of absolute value, maximum value, median of non-zero value and semi-window energy, are extracted to form a feature matrix, whose dimension is then reduced by the principal component analysis. Finally, support vector machine is employed to recognize five different hand gestures, and 80.4% of accuracy can be obtained, while only about 70% of recognition accuracy can be achieved by traditional methods without sEMG decomposition.

Key words: hierarchical clustering, motor unit action potential trains, principal component analysis, sEMG, support vector machine

中图分类号: